
KNIME Database Extension Guide
KNIME AG, Zurich, Switzerland

Version 4.0 (last updated on 2019-09-17)

Table of Contents

Introduction. 1

Port Types . 1

Connecting to a database . 4

Connecting to predefined databases . 4

Connecting to other databases . 7

Advanced Database Options . 14

Reading from a database . 19

Database Metadata Browser . 20

Query Generation . 21

Visual Query Generation . 21

Advanced Query Building . 27

Database Structure Manipulation. 30

DB Table Remover. 30

DB Table Creator . 31

DB Manipulation . 35

DB Delete . 35

DB Writer . 36

DB Insert . 37

DB Update . 37

DB Merge . 37

DB Loader. 37

Type Mapping . 40

DB Type Mapper . 41

Migration . 42

Workflow Migration Tool . 42

Node Name Mapping . 47

Server Setup . 50

Register your own JDBC drivers on the KNIME Server . 50

Server-managed Customization Profiles . 51

Default JDBC Parameters . 54

Reserved JDBC Parameters. 55

Introduction

The KNIME Database Extension provides a set of KNIME nodes that allow connecting to

JDBC-compliant databases. These nodes reside in the DB category in the Node Repository,

where you can find a number of database access, manipulation and writing nodes.

The database nodes are part of every KNIME Analytics Platform installation. It is not

necessary to install any additional KNIME Extensions.

This guide describes the KNIME Database extension, and shows, among other things, how to

connect to a database, and how to perform data manipulation inside the database.

Figure 1. Example workflow using DB nodes

Port Types

Figure 2. Two types of Database port

There are two types of ports in the Database extension, the DB Connection port (red) and the

DB Data port (dark red).

The DB Connection port stores information about the current DB Session, e.g data types,

connection properties, JDBC properties, driver information, etc.

The DB Data port contains not only the DB Session, but also the DB Data object, which is

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 1

described by a SQL query.

Outport views

After executing a DB node, you can inspect the result in the outport view by right clicking the

node and selecting the outport to inspect at the bottom of the menu. For more information

on how to execute a node, please refer to the Quickstart Guide.

DB Connection outport view

The outport view of a DB Connection has the DB Session tab, which contains the information

about the current database session, such as database type, and connection URL.

DB Data outport view

When executing a database manipulation node that has a DB Data outport, for example a DB

GroupBy node, what the node does is to build the necessary SQL query to perform the

GroupBy operation selected by the user and forward it to the next node in the workflow. It

does not actually execute the query. However, it is possible to inspect a subset of the

intermediate result via the DB Data outport view. In addition to information about the DB

Session, the DB Data outport view contains the preview and specification of the output data.

The Table Preview tab in the outport view shows an empty table at the beginning. Clicking on

Cache no. of rows: will execute the intermediate SQL query and cache a subset of the output

which then will be shown in the outport view. By default only the first 100 rows are cached,

but you can set your own value at the top.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 2

https://docs.knime.com/2019-06/analytics_platform_quickstart_guide/index.pdf#introduction

Figure 3. DB Outport View with retrieved rows

Depending on the complexity of the SQL query, caching the first 100 rows might

take a long time.

The table specification can be inspected in the DB Spec tab. It contains the list of columns in

the table, with their database types and the corresponding KNIME data types (For more

information on the type mapping between database types and KNIME types, please refer to

the Type Mapping section. In order to get the table specification, a query that only fetches the

metadata but not the data itself is executed during configuration of the node or during

execution. Execution of the metadata query during configure can be disabled via the

Advanced Tab of the Connector node.

The DB Query tab contains the intermediate SQL query that defines the data at this outport.

The query consists of the queries that were created in the preceding database nodes, and will

only be executed when you want to retrieve the result in a KNIME data table, for example

using the DB Reader node.

Session Handling

The DB Session lifecycle is managed by the Connector nodes. Executing a Connector node

will create a DB Session, and resetting the node or closing the workflow will destroy the

corresponding DB Session.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 3

Connecting to a database

The DB → Connection subcategory in the Node Repository contains

• a set of database-specific connector nodes for commonly used databases such as

Microsoft SQL Server, MySQL, PostgreSQL, H2, etc.

• as well as the generic Database Connector node.

A Connector node creates a connection to a database via its JDBC driver. In the configuration

dialog of a Connector node you need to provide information such as the database type, the

location of the database, and the authentication method if available.

The database-specific connector nodes already contain the necessary JDBC

drivers and provide a configuration dialog that is tailored to the specific

database. It is recommended to use these nodes over the generic DB Connector

node, if possible.

Connecting to predefined databases

The following are some databases that have their own dedicated Connector node:

• H2

• Microsoft Access

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• SQLite

Some dedicated Connector nodes, such as Oracle or Amazon Redshift, come

without a JDBC driver due to licensing restriction. If you want to use these

nodes, you need to register the corresponding JDBC driver first. Please refer to

the Register your own JDBC drivers section on how to register your own driver.

For Amazon Redshift, please refer to the Third-party Database Driver Plug-in

section.

If no dedicated connector node exists for your database, you can use the generic DB

Connector node. For more information on this please refer to the Connecting to other

databases section.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 4

After you find the right Connector node for your database, double-click on the node to open

the configuration dialog. In the Connection Settings window you can provide the basic

parameters for your database, such as the database type, dialect, location, or authentication.

Then click Ok and execute the node to establish a connection.

The KNIME Analytics Platform in general provides three different types of connector nodes

the File-based Connector node , the Server-based Connector node and the generic Connector

nodes which are explained in the following sections.

File-based Connector node

Figure 4. H2 Connector configuration dialog

The figure on the left side shows an

example of the node dialog for a file-based

database, such as SQLite, H2, or MS

Access. The most important node settings

are described below:

Configuration: In the configuration window

you can choose the registered database

dialect and driver.

Location: The location to the database. You

can provide either the path to an existing

database, or choose in-memory to create a

temporary database that is kept in memory

if the database supports this feature.

Server-based Connector node

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 5

Figure 5. MS SQL Server Connector

configuration dialog

The figure on the left side shows an

example of the node dialog for a server-

based database, such as MySQL, Oracle, or

PostgreSQL. The most important node

settings are described below.

Configuration: In the configuration window

you can choose the registered database

dialect and driver.

Location: The location to the database. You

should provide the hostname and the port

of the machine that hosts the database, and

also the name of the database which might

be optional depending on the database.

Authentication: Login credentials can either

be provided via credential flow variables, or

directly in the configuration dialog in the

form of username and password. Kerberos

authentication is also provided for

databases that support this feature, e.g Hive

or Impala.

For more information on the JDBC Parameters and Advanced tab, please refer

to the JDBC Parameters and Advanced Tab section. The Type Mapping tabs

are explained in the Type Mapping section.

Third-party Database Driver Plug-in

As previously mentioned, the dedicated database-specific connector nodes already contain

the necessary JDBC drivers. However, some databases require special licensing that

prevents us from automatically installing or even bundling the necessary JDBC drivers with

the corresponding connector nodes. For example, KNIME provides additional plug-ins to

install the official Microsoft SQL Server driver or the Amazon Redshift driver which require

special licenses.

To install the plug-ins, go to File → Install KNIME Extensions…. In the Install window, search

for the driver that you need (MS SQL Server or Redshift), and you will see something similar

to the figure below. Then select the plug-in to install it. If you don’t see the plug-in in this

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 6

https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server?view=sql-server-2017
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html

window then it is already installed. After installing the plug-in, restart KNIME. After that, when

you open the configuration dialog of the dedicated Connector node, you should see that the

installed driver of the respective database is available in the driver name list.

Figure 6. Install Window

Connecting to other databases

The generic DB Connector node can connect to arbitrary JDBC compliant databases. The

most important node settings are described below.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 7

Figure 7. Database Connector configuration dialog

Database Type: Select the type of the database the node will connect to. For example, if the

database is a PostgreSQL derivative select Postgres as database type. if you don’t know the

type select the default type.

Database Dialect: Select the database dialect which defines how the SQL statements are

generated.

Driver Name: Select an appropriate driver for your specific database. If there is no matching

JDBC driver it first needs to be registered, see Register your own JDBC drivers. Only drivers

that have been registered for the selected database type will be available for selection.

Database URL: A driver-specific JDBC URL. Enter the database information in the placeholder,

such as the host, port, and database name.

Authentication: Login credentials can either be provided via credential flow variables, or

directly in the configuration dialog in the form of username and password. Kerberos

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 8

authentication is also provided for databases that support this feature, e.g Hive or Impala.

The selected database type and dialect determine which data types, statements

such as insert, update, and aggregation functions are supported.

If you encounter an error while connecting to a third-party database, you can enable the JDBC

logger option in the Advanced Tab. If this option is enabled all JDBC operations are written

into the KNIME log which might help you to identify the problems. In order to tweak how

KNIME interacts with your database e.g. quotes identifiers you can change the default

settings under the Advanced Tab according to the settings of your database. For example,

KNIME uses " as the default identifier quoting, which is not supported by default by some

databases (e.g Informix). To solve this, simply change or remove the value of the identifier

delimiter setting in the Advanced Tab.

Register your own JDBC drivers

For some databases KNIME Analytics Platform does not contain a ready-to-use JDBC driver.

In these cases, it is necessary to first register a vendor-specific JDBC driver in KNIME

Analytics Platform. Please consult your database vendor to obtain the JDBC driver. A list of

some of the most popular JDBC drivers can be found below.

 The JDBC driver has to be JDBC 4.1 or JDBC 4.2 compliant.

To register your vendor-specific JDBC driver, go to File → Preferences → KNIME →
Databases.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 9

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_41.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

Figure 8. DB Preference page

Clicking Add will open a new database driver window where you can provide the JDBC driver

path and all necessary information, such as:

• ID: The unique ID of the JDBC driver consisting only of alphanumeric characters and

underscore.

• Name: The unique name of the JDBC driver.

• Database type: The database type. If you select a specific database type e.g. MySQL the

driver will be available for selection in the dedicated connector node e.g. MySQL

Connector. However if your database is not on the list, you can choose default, which

will provide you with all available parameters in the Advanced Tab. Drivers that are

registered for the default type are only available In the generic DB Connector node.

• Description: Optional description of the JDBC driver.

• URL template: The JBC driver connection URL format which is used in the dedicated

connector nodes. Please refer to the JDBC URL Template section for more information.

• Classpath: The path to the JDBC driver. Click Add file if the driver is provided as a single

.jar file, or Add directory if the driver is provided as a folder that contains several .jar

files. Some vendors offer a .zip file for download, which needs to be unpacked to a

folder first.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 10

• Driver class: The JDBC driver class and version will be detected automatically by

clicking Find driver classes. Please select the appropriate class after clicking the

button.

Let’s do an example here and try to add the Oracle JDBC driver.

Figure 9. Edit database driver settings

• ID: Oracle, but you can enter your own driver ID as long as it only contains alphanumeric

characters and underscores.

• Name: Oracle, but you can enter your own driver name.

• Database type: Oracle is available in the drop down list, so the database type is set to

Oracle.

• Description: My Oracle driver.

• URL template: The JDBC URL template for an Oracle Thin driver is as the following

jdbc:oracle:thin:@<host>:<port>/<database> according to the documentation.

Please refer to the JDBC URL Template section for more information on the supported

tokens e.g. host, port and database.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 11

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html

• Classpath: Click Add file to add the ojdbc8.jar Oracle JDBC driver file. The path to the

driver file will then appear in the Classpath area.

• Driver class: clicking Find driver classes will automatically detect all available JDBC

driver classes and versions, which in this case is oracle.jdbc.OracleDriver in version

12.2.0.

If your database is available in the Database type drop down list, it is better to

select it instead of setting it to default. Setting the Database type to default will

allow you to only use the generic DB Connector node to connect to the

database, even if there is a dedicated Connector node for that database.

After filling all the information, click Ok, and the newly added driver will appear in the

database driver preferences table. Click Apply and Close to apply the changes and you can

start connecting to your database.

Figure 10. Database Preference page

JDBC URL Template

When registering a JDBC driver, you need to specify its JDBC URL template, which will be

used by the dedicated Connector node to create the final database URL. For example,

jdbc:oracle:thin:@<host>:<port>/<database> is a valid driver URL template for the Oracle

thin driver. The values of the variables, e.g <host>, <port>, or <database> can be specified in

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 12

https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

the configuration dialog of the corresponding Connector node.

Tokens:

• Mandatory value (e.g. <database>): The referenced token must have a non-blank value.

The name between the brackets must be a valid token name (see below for a list of

supported tokens).

• Optional value (e.g. [database]): The referenced token may have a blank value. The

name between the brackets must be a valid token name (see below for a list of

supported tokens).

• Conditions (e.g. [location=in-memory?mem:<database>]): This is applicable for file-

based databases, such as H2, or SQLite. The first ? character separates the condition

from the content that will only be included in the URL if the condition is true. The only

explicit operator available currently is =, to test the exact value of a variable. The left

operand must be a valid variable name, and the right operand the value the variable is

required to have for the content to be included. The content may include mandatory

and/or optional tokens (<database>/[database]), but no conditional parts. It is also

possible to test if a variable is present. In order to do so, specifying the variable name

e.g. database as the condition. E.g.

jdbc:mydb://<host>:<port>[database?/databaseName=<database>] will result in

jdbc:mydb://localhost:10000/databaseName=db1 if the database name is specified in

the node dialog otherwise it would be jdbc:mydb://localhost:10000.

For server-based databases, the following tokens are expected:

• host: The value of the Hostname field on the Connection Settings tab of a Connector

node.

• port: The value of the Port field on the Connection Settings tab of a Connector node.

• database: The value of the Database name field on the Connection Settings tab of a

Connector node.

For file-based databases, the following tokens are expected:

• location: The Location choice on the Connection Settings tab of a Connector node. The

file value corresponds to the radio button next to Path being selected, and in-memory to

the radio button next to In-memory. This variable can only be used in conditions.

• file: The value of the Path field on the Connection Settings tab of a Connector node. This

variable is only valid if the value of the location is file.

• database: The value of the In-memory field on the Connection Settings tab of a

Connector node. This variable is only valid if the value of the location is in-memory.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 13

Field validation in the configuration dialog of a Connector node depends on

whether the (included) tokens referencing them are mandatory or optional (see

above).

List of common JDBC drivers

Below is a selected list of common database drivers you can add among others to KNIME

Analytics Platform:

• Apache Derby

• Exasol

• Google BigQuery

• IBM DB2 / Informix

• Oracle

• SAP HANA

• SnowFlake

The list above only shows some example of database drivers that you can add.

If your driver is not in the list above, it is still possible to add it to KNIME

Analytics Platform.

Advanced Database Options

JDBC Parameters

The JDBC parameters allow you to define custom JDBC driver connection parameter. The

value of a parameter can be a constant, variable, credential user, credential password or

KNIME URL. For more information about the supported connection parameter please refer to

your database vendor.

The figure below shows an example of SSL JDBC parameters with different variable types.

You can set a boolean value to enable or disable SSL, you can also use a KNIME relative URL

to point to the SSLTrustStore location, or use a credential input for the trustStorePassword

parameter.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 14

http://db.apache.org/derby/derby_downloads.html
https://www.exasol.com/en/download/
https://cloud.google.com/bigquery/
http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=ifxjdbc
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://support.sap.com/en/my-support/software-downloads.html
https://www.snowflake.com/

Figure 11. JDBC Parameters Tab

Advanced Tab

The settings in the Advanced tab allow you to define KNIME framework properties such as

connection handling, advanced SQL dialect settings or query logging options. This is the

place where you can tweak how KNIME interacts with the database e.g. how the queries

should be created that are send to the database. In the Metadata section you can also

disable the metadata fetching during configuration of a node or alter the timeout when doing

so which might be necessary if you are connected to a database that needs more time to

compute the metadata of a created query or you are connected to it via a slow network.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 15

Figure 12. Advanced Tab

The full available options are described as follow:

• Validation query: The query to be executed for validating that a connection is ready for

use. If no query is specified KNIME calls the Connection.isValid() method to validate

the connection. Only errors are checked, no result is required.

• CASE expressions: Whether CASE expressions are allowed in generated statements.

• CREATE TABLE CONSTRAINT name: Whether names can be defined for CONSTRAINT

definitions in CREATE TABLE statements.

• DROP TABLE statement: Whether DROP TABLE statements are part of the language.

• Derived table reference: Whether table references can be derived tables.

• Insert into table from query: Whether insertion into a table via a select statement is

supported, e.g. INSERT INTO T1 (C1) (SELECT C1 FROM T2).

• JDBC logger: Enables or disables logger for JDBC operations.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 16

https://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html#isValid(int)

• JDBC statement cancellation: Enables or disables JDBC statement cancellation

attempts when node execution is canceled.

• Node cancellation polling interval: The amount of milliseconds to wait between two

checking of whether the node execution has been canceled. Valid range: [100, 5000].

• Retrieve in configure: Enables or disables retrieving metadata in configure method for

database nodes.

• Retrieve in configure timeout: Time interval in seconds to wait before canceling a

metadata retrieval in configure method. Valid range: [1,).

• Transaction: Enables or disables database transactions e.g. commit/rollback. If the

database you want to connect to e.g. Google Big Query or Dremio does not support

transaction please disable this option.

• CREATE "temporary" TABLE syntax: The keyword or keywords for creating temporary

tables.

• CREATE TABLE "if not exists" syntax: The syntax for the table creation statement

condition "if not exists". If empty, no such statement will automatically be created,

though the same behavior may still be non-atomically achieved by nodes.

• Delimit only identifier with spaces: If selected, only identifiers, e.g. columns or table

names, with spaces are delimited.

• Fetch size: Hint for the JDBC driver about the number of rows that should be fetched

from the database when more rows are needed. Valid range: [0,).

• Identifier delimiter (closing): Closing delimiter for identifier such as column and table

name.

• Identifier delimiter (opening): Opening delimiter for identifier such as column and table

name.

• Table reference keyword: The keyword before correlation names in table references.

• Append JDBC parameter to URL: Enables or disables appending of parameter to the

JDBC URL instead of passing them as properties.

• Append user name and password to URL: Enables or disables appending of the user

name and password to the JDBC URL instead of passing them as properties.

• JDBC URL initial parameter separator: The character that indicates the start of the

parameters in the JDBC URL.

• JDBC URL parameter separator: The character that separates two JDBC parameter in

the JDBC URL.

• JDBC URL last parameter suffix: The character to be appended after the last parameter

in the JDBC URL.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 17

• Minus operation: Whether MINUS set operations are supported or not.

Dedicated DB connectors (e.g. Microsoft SQL Server Connector) usually show only a subset

of the above mentioned options since most options are predefined, such as whether the

database supports CASE statements, etc.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 18

Reading from a database

Figure 13. Reading from a database

The figure above is an example on how to read from a database. In this example we want to

read the flights dataset stored in an H2 database into a KNIME data table.

First you need a connector node to establish a connection to the database, in the example

above it is an H2 database. There are several dedicated connector nodes depending on

which database we want to connect to. For further details on how to connect to a database

refer to the Connecting to a database section .

Figure 14. DB Table Selector configuration

dialog

After the connection is established, the next

step is to use the DB Table Selector node

that allows selecting a table or a view

interactively based on the input database

connection.

The figure on the left side shows the

configuration dialog of the DB Table

Selector node. At the top part you can enter

the schema and the table/view name that

you want to select, in this example we want

to select the "flights" table.

Pressing the Select a table button will open a Database Metadata Browser window that lists

available tables/views in the database.

In addition, ticking the Custom Query checkbox will allow you to write your own custom SQL

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 19

http://stat-computing.org/dataexpo/2009/the-data.html

query to narrow down the result. It accepts any SELECT statement, and the placeholder

#table# can be used to refer to the table selected via the Select a table button.

The Input Type Mapping tab allows you to define mapping rules from database types to

KNIME types. For more information on this, please refer to the section Type Mapping.

The output of this node is a DB Data connection that contains the database information and

the SQL query automatically build by the framework that selects the entered table or the user

entered custom query. To read the selected table or view into KNIME Analytics Platform, you

can use the DB Reader node. Executing this node will execute the input SQL query in the

database and the output will be the result stored in a KNIME data table which will be stored

on the machine the KNIME Analytics Platform is running.

Database Metadata Browser

Figure 15. Database Metadata Browser

The Database Metadata Browser shows the

database schema, including all tables /

views and their corresponding columns and

column data types. At first opening it

fetches the metadata from the database

and caches it for subsequent use. By

clicking on an element (schema/table/view)

it shows the contained elements. To select

a table or view select the name and click OK

or double click the element.

The search box at the top of the window

allows you to search for any table or view

inside the database. At the bottom there is a

refresh button to re-fetch the schema list

with a time reference on how long ago the

schema was last refreshed.

If you have just created a table and you cannot find it in the schema list, it might

be that the metadata browser cache is not up to date, so please try to refresh

the list by clicking the refresh button at the lower right corner.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 20

Query Generation

Figure 16. DB Query nodes

Once you have successfully connected to

your database, there is a set of nodes that

provide in-database data manipulation, such

as aggregating, filtering, joining etc.

The database nodes come with a visual

user interface and automatically build a SQL

query in the background according to the

user settings in the configuration window,

so no coding is required to interact with the

database.

The output of each node is a SQL query that

corresponds to the operation(s) that are

performed within the node. The generated

SQL query can be viewed via the DB Data

outport view .

Visual Query Generation

Figure 17. Example of a workflow that performs in-database data manipulation

The figure above shows an example of in-database data manipulation. In this example, we

read the flights dataset from a H2 database. First we filter the rows so that we take only the

flights that fulfil certain conditions. Then we calculate the average air time to each unique

destination airport. Finally we join the average values together with the original values and

then read the result into KNIME Analytics Platform.

The first step is to connect to a database and select the appropriate table we want to work

with.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 21

https://en.wikipedia.org/wiki/SQL
http://stat-computing.org/dataexpo/2009/the-data.html

DB Row Filter

Figure 18. DB Row Filter configuration dialog

After selecting the table, you can start working with the data. First we use the DB Row Filter

node to filter rows according to certain conditions. The figure above shows the configuration

dialog of the DB Row Filter. On the left side there is a Preview area that lists all conditions of

the filter to apply to the input data. Filters can be combined and grouped via logical operators

such as AND or OR. Only rows that fulfil the specified filter conditions will be kept in the

output data table. At the bottom there are options to:

• Add Condition: add more condition to the list

• Group: Create a new logical operator (AND or OR)

• Ungroup: Delete the currently selected logical operator

• Delete: Delete the selected condition from the list

To create a new condition click on the Add_Condition button. To edit a condition select in the

condition list which will show the selected condition in the condition editor on the right. The

editor consists of at least two dropdown lists. The most left one contains the columns from

the input data table, and the one next to it contains the operators that are compatible with the

selected column type, such as =, !=, <, >. Depending on the selected operation a third and

maybe fourth input field will be displayed to enter or select the filter values. The button next

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 22

to the values fields fetches all possible values for the selected column which will then be

available for selection in the value field.

Clicking on a logical operator in the Preview list would allow you to switch between AND or

OR, and to delete this operator by clicking Ungroup.

As in our example, we want to return all rows that fulfil the following conditions:

• Originate from the Chicago O’Hare airport (ORD) OR Hartsfield-Jackson Atlanta Airport

(ATL)

• AND occur during the month of June 2017

• AND have a mild arrival delay between 5 and 45 minutes

DB GroupBy

Figure 19. DB GroupBy: Manual Aggregation

The next step is to calculate the average air time to each unique destination airport using the

DB GroupBy node. To retrieve the number of rows per group tick the Add Count(*) checkbox in

the Advanced Settings. The name of the group count column can be changed via the result

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 23

column name field.

Figure 20. DB GroupBy: Group Settings

To calculate the average air time for each destination airport, we need to group by the Dest

column in the Groups tab, and in Manual Aggregation tab we select the ActualElapsedTime

column (air time) and AVG as the aggregation method.

DB Joiner

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 24

Figure 21. DB Joiner: Joiner Settings

To join the result back to the original data, we use the DB Joiner node, which joins two

database tables based on joining column(s) of both tables. In the Joiner settings tab, there

are options to choose the join mode, whether Inner Join, Full Outer Join, etc, and the joining

column(s).

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 25

Figure 22. DB Joiner: Column Selection

In the Column Selection tab you can select which columns from each of the table you want to

include in the output table. By default the joining columns from bottom input will not show up

in the output table.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 26

Advanced Query Building

Sometimes, using the predefined DB nodes for manipulating data in database is not enough.

This section will explain some of the DB nodes that allow users to write their own SQL

queries, such as DB Query, DB Query Reader, and Parametrized DB Query Reader node.

Figure 23. Example workflow with advanced query nodes

Each DB manipulation node, that gets a DB data object as input and returns a

DB data object as output, wraps the incoming SQL query into a sub-query.

However some databases don’t support sub-queries, and if that is the case,

please use the DB Query Reader node to read data from the database.

The figure below shows the configuration dialog of the DB Query node. The configuration

dialog of other advanced query nodes that allow user to write SQL statements provide a

similar user experience. There is a text area to write your own SQL statement, which provides

syntax highlighting and code completion by hitting Ctrl+Space. On the lower side there is an

Evaluate button where you can evaluate the SQL statement and return the first 10 rows of the

result. If there is an error in the SQL statement then an error message will be shown in the

Evaluate window. On the left side there is the Database Metadata Browser window that

allows you to browse the database metadata such as the tables and views and their

corresponding columns. The Database Column List contains the columns that are available in

the connected database table. Double clicking any of the items will insert its name at the

current cursor position in the SQL statement area.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 27

Figure 24. Configuration dialog of the DB Query node

DB Query

The DB Query node modifies the input SQL query from an incoming database data

connection. The SQL query from the predecessor is represented by the place holder #table#

and will be replaced during execution. The modified input query is then available at the

outport.

DB Query Reader

Executes an entered SQL query and returns the result as KNIME data table. This node does

not alter or wrap the query and thus supports all kinds of statements that return data.

This node supports other SQL statements beside SELECT, such as DESCRIBE

TABLE.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 28

Parameterized DB Query Reader

This node allows you to execute a SQL query with different parameters. It loops over the

input KNIME table and takes the values from the input table to parameterise the input SQL

query. Since the node has a KNIME data table input it provides a type mapping tab that

allows you to change the mapping rules. For more information on the Type Mapping tab,

please refer to the Type Mapping section.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 29

Database Structure Manipulation

Database Structure Manipulation refers to any manipulation to the database tables. The

following workflow demonstrates how to remove an existing table from a database using the

DB Table Remover and create a new table with the DB Table Creator node.

Figure 25. Example of a database structure manipulation workflow

DB Table Remover

Figure 26. DB Table Remover configuration dialog

This node removes a table from the database defined by the incoming database connection.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 30

Executing this node is equivalent to executing the SQL command DROP. In the configuration

dialog, there is an option to select the database table to be removed. The configuration is the

same as in the DB Table Selector node, where you can input the corresponding Schema and

the table name, or select it in the Database Metadata Browser.

The following options are available in the configuration window:

Cascade: Selecting this option means that removing a table that is referenced by other

tables/views will remove not only the table itself but also all dependent tables and views. If

this option is not supported by your database then it will be ignored.

Fail if table does not exist: Selecting this option means the node will fail if the selected table

does not exist in the database. By default, this option is not enabled, so the node will still

execute successfully even if the selected table does not exist in the database.

DB Table Creator

Figure 27. DB Table Creator: Settings

This node creates a new database table. The table can be created either manually, or

dynamically based on the input data table spec. It supports advanced options such as

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 31

https://en.wikipedia.org/wiki/Data_definition_language#DROP_statement
https://en.wikipedia.org/wiki/Data_definition_language#CREATE_statements

specifying if a column can contain null values or specifying primary key or unique keys as

well as the SQL type.

When the Use dynamic settings option is enabled the database table structure is defined by

the structure of the input KNIME data table. The Columns and Keys tabs are read only and

only help to verify the structure of the table that is created. The created database table

structure can be influenced by changing the type mapping e.g. by defining that KNIME double

columns should be written to the database as string columns the DB Table Creator will

choose the string equivalent database type for all double columns. This mapping and also

the key generation can be further influenced via the Dynamic Type Settings and Dynamic Key

Settings tabs.

In the Settings tab you can input the corresponding schema and table name. The following

options are available:

Create temporary table: Selecting this will create a temporary table. The handling of

temporary tables, such as how long it exists, the scope of it, etc depends on the database you

use. Please refer to your database vendor for more details on this.

Fail if table exists: Selecting this will make the node fail with database-specific error message

if the table already exists. By default, this option is disable, so the node will execute

successfully and not create any table if it already existed.

Use dynamic settings: Selecting this will allow the node to dynamically define the structure of

the database table e.g. column names and types based on the input KNIME table and the

dynamic settings tabs. Only if this option is enabled will the Dynamic Type Settings and

Dynamic Column Settings tab be available. The mappings defined in the Name-Based SQL

Type Mapping have a higher priority than the mappings defined in the KNIME-Based SQL Type

Mapping. If no mapping is defined in both tabs, the default mapping based on the Type

Mapping definitions of the database connector node are used. Note that while in dynamic

settings mode the Columns and Keys tab become read-only to allow you a preview of the

effect of the dynamic settings.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 32

Figure 28. DB Table Creator: Columns

In the Columns tab you can modify the mapping between the column names from the input

table and their corresponding SQL type manually. You can add or remove column and set the

appropriate SQL type for a specific column. However, if the Use dynamic settings is selected,

this tab become read-only and serves as a preview of the dynamic settings.

In the Key tab you can set certain columns as primary/unique keys manually. As in the

Columns tab, if the Use dynamic settings is enabled, this tab become read-only and serves as

a preview of the dynamic settings.

In the Additional Options tab you can write additional SQL statement which will be appended

after the CREATE TABLE statement, e.g storage parameter. This statement will be appended

to the end of the automatically generated CREATE TABLE statement and executed as a

single statement.

In the Dynamic Columns Settings there are two types of SQL Type Mapping, the Name-Based

and the KNIME-Based.

• In the Name-Based SQL Type Mapping you define the default SQL type mapping for a

set of columns based on the column names. You can add a new row containing the

name pattern of the columns that should be mapped. The name pattern can either be a

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 33

string with wildcard or a regular expression. The mappings defined in the Name-Based

SQL Type Mapping have a higher priority than the mappings defined in the KNIME-Based

SQL Type Mapping.

• In the KNIME-Type-Based SQL Type Mapping you can define the default SQL type

mapping based on a KNIME data type. You can add a new row containing the KNIME

data type that should be mapped.

In the Dynamic Keys Settings you can dynamically define the key definitions based on the

column names. You can add a new row containing the name pattern of the columns that

should be used to define a new key. The name pattern can either be a string with wildcard or

a regular expression.

Supported wildcards are * (matches any number of characters) and ? (matches

one character) e.g. KNI* would match all strings that start with KNI such as

KNIME whereas KNI? would match only strings that start with KNI followed by a

fourth character.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 34

DB Manipulation

This section describes various DB nodes for in-database manipulation, such as DB Delete, DB

Writer, DB Insert, DB Update, DB Merge, and DB Loader node.

Figure 29. Example of DB Manipulation

DB Delete

This node deletes rows from a selected table in the database. The input is a DB Connection

port that describes the database, and also a KNIME data table containing the values which

define which rows to delete from the database. It deletes data rows in the database based on

the selected columns from the input table. Therefore all selected column names need to

exactly match the column names inside the database. Only the rows in the database table

that match the value combinations of the selected columns from the KNIME input data table

will be deleted.

The figure below shows the configuration dialog of the DB Delete node. The configuration

dialog of the other nodes for DB Manipulation are very similar. You can enter the table name

and its corresponding schema or select the table name in the Database Metadata Browser by

clicking Select a table.

In addition the identification columns from the input table need to be selected. The names of

the selected KNIME table columns have to match the names in the selected database table.

All rows in the database table with matching values for the selected columns from the input

KNIME data table will be deleted. In SQL this is equivalent to the WHERE columns. There are

two options:

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 35

https://en.wikipedia.org/wiki/Delete_(SQL)
https://en.wikipedia.org/wiki/Where_(SQL)

• Append delete status columns: if selected, it will add two extra columns in the output

table. The first column contains the number of rows affected by the DELETE statement.

A number greater or equal to zero indicates that the operation was performed

successfully. A value of -2 indicates that the operation was performed successfully but

the number of rows affected is unknown. The second column will contain a warning

message if any exists.

• Fail on error: if selected, the node will fail if any errors occur during execution otherwise

it will execute successfully even if one of the input rows caused an exception in the

database.

Figure 30. Configuration dialog of the DB Delete node

The Output Type Mapping tab allows you to define mapping rules from KNIME types to

database types. For more information on this, please refer to the Type Mapping section.

DB Writer

This node inserts the selected values from the input KNIME data table into the specified

database tables. It performs the same function as the DB Insert node, but in addition it also

creates the database table automatically if it does not exist prior inserting the values. The

newly created table will have a column for each selected input KNIME column. The database

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 36

https://en.wikipedia.org/wiki/Delete_(SQL)
https://en.wikipedia.org/wiki/Insert_(SQL)

column names will be the same as the names of the input KNIME columns. The database

column types are derived from the given KNIME types and the Type Mapping configuration.

All database columns will allow missing values (e.g. NULL).

Please use the DB Table Creator node if you want to control the properties of the created

database table.

Once the database table exists the node will write all KNIME input rows into the database

table in the same way as the DB Insert node.

DB Insert

This node inserts the selected values from the input KNIME data table into the specified

database tables. All selected column names need to exactly match the column names within

the database table.

DB Update

This node updates rows in the specified database table with values from the selected

columns of the input KNIME data table. The identification columns are used in the WHERE part

of the SQL statement and identify the rows in the database table that will be updated. The

columns to update are used in the SET part of the SQL statement and contain the values that

will be written to the matching rows in the selected database table.

DB Merge

The DB Merge node is a combination of the DB Update and DB Insert node. If the database

supports the functionality it executes a MERGE statement that inserts all new rows or updates

all existing rows in the selected database table. If the database does not support the merge

function the node first tries to update all rows in the database table and then inserts all rows

where no match was found during the update. The names of the selected KNIME table

columns need to match the names of the database table where the rows should be updated.

DB Loader

This node performs database-specific bulk loading functionality that only some databases

(e.g. Hive, Impala, MySQL, PostgreSQL and H2) support to load large amounts of data into an

existing database table.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 37

https://en.wikipedia.org/wiki/Insert_(SQL)
https://en.wikipedia.org/wiki/Update_(SQL)
https://en.wikipedia.org/wiki/Where_(SQL)
https://en.wikipedia.org/wiki/Merge_(SQL)

Most databases do not perform data checks when loading the data into the

table which might lead to a corrupt data table. The node does perform some

preliminary checks such as checking that the column order and column names

of the input KNIME data table are compatible with the selected database table.

However it does not check the column type compatibility or the values itself.

Please make sure that the column types and values of the KNIME table are

compatible with the the database table.

Depending on the database an intermediate file format (e.g. CSV, Parquet, ORC) is often used

for efficiency which might be required to upload the file to a server. If a file needs to be

uploaded, any of the protocols supported by the file handling nodes and the database can be

used, e.g. SSH/SCP or FTP. After the loading of the data into a table, the uploaded file gets

deleted if it is no longer needed by the database. If there is no need to upload or store the file

for any reason, a file connection prevents execution.

Some databases such as MySQL and PostgreSQL support file-based and memory-based

uploading which require different rights in the database. For example, if you do not have the

rights to execute the file-based loading of the data try the memory-based method instead.

If the database supports various loading methods (file-based or memory-

based), you can select the method in the Options tab, as shown in the example

below. Otherwise the Loader mode option will not appear in the configuration

dialog.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 38

Figure 31. DB Loader: Option

Depending on the connected database the advanced dialog settings may change. For

example, MySQL and PostgreSQL use a CSV file for the data transfer. In order to change how

the CSV file is created go to the Advanced tab.

Figure 32. DB Loader: Advanced

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 39

Type Mapping

The database framework allows you to define rules to map from database types to KNIME

types and vice versa. This is necessary because databases support different sets of types

e.g. Oracle only has one numeric type with different precisions to represent integers but also

floating-point numbers whereas KNIME uses different types (integer, long, double) to

represent them.

Especially date and time formats are supported differently across different databases. For

example the zoned date time type that is used in KNIME to represent a time point within a

defined time zone is only supported by few databases. But with the type mapping framework

you can force KNIME to automatically convert the zoned date time type to string before

writing it into a database table and to convert the string back into a zoned date time value

when reading it.

The type mapping framework consists of a set of mapping rules for each direction specified

from the KNIME Analytics Platform view point:

• Output Type Mapping: The mapping of KNIME types to database types

• Input Type Mapping: The mapping from database types to KNIME types

Each of the mapping direction has two sets of rules:

• Mapping by Name: Mapping rules based on a column name (or regular expression) and

type. Only column that match both criteria are considered.

• Mapping by Type: Mapping rules based on a KNIME or database type. All columns of

the specified data type are considered.

The type mapping can be defined and altered at various places in the analysis workflow. The

basic configuration can be done in the different connector nodes. They come with a sensible

database specific default mapping. The type mapping rules are part of the DB Connection

and DB Data connections and inherited from preceding nodes. In addition to the connector

nodes provide all database nodes with a KNIME data table a Output Type Mapping tab to map

the data types of the nodes input KNIME columns to the types of the corresponding database

columns.

The mapping of database types to KNIME types can be altered for any DB Data connection

via the DB Type Mapper node.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 40

https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html
https://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html

DB Type Mapper

The DB Type Mapper node changes the database to KNIME type mapping configuration for

subsequent nodes by selecting a KNIME type to the given database Type. The configuration

dialog allows you to add new or change existing type mapping rules. All new or altered rules

are marked as bold.

Figure 33. DB Type Mapper configuration dialog

 Rules from preceding nodes can not be deleted but only altered.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 41

Migration

This section explains how to migrate your workflow that contains old database nodes

(legacy) to the new database framework. The Workflow Migration Tool can be used to guide

you through the process and convert the database legacy nodes to the corresponding new

database nodes. For the mapping between the legacy and the new nodes, please look at the

list in the Node Name Mapping section.

All previously registered JDBC drivers need to be re-registered. For more

information on how to register a driver in the new database framework, please

refer to the Register your own JDBC drivers section.

Workflow Migration Tool

The workflow migration tool is still in preview. We will continue to add new and

revise existing functionality.

The workflow migration tool assists you to migrate existing workflows that contain legacy

database nodes to the new database nodes. The tool does not change any existing workflow

but performs the migration on a copy of the original workflow.

As an example, we can see in the figure below a workflow that contains database legacy

nodes. The goal is to use the Workflow Migration Tool to help us migrating the legacy nodes

to the new database nodes.

Figure 34. Workflow containing Database Legacy nodes

In order to start the Workflow Migration tool go to the KNIME Explorer, find the workflow

containing the database legacy nodes that you want to migrate, and right click on the

workflow. You can see the option Migrate legacy DB workflow… at the bottom (see figure

below).

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 42

Figure 35. Migration Tool option by right-clicking the workflow

Clicking on Migrate legacy DB workflow… will open the migration wizard window as shown

below. In this window, you can change the workflow to migrate (the one containing the

database legacy nodes), and enter the name for the new workflow, which is a copy of the old

workflow but with the database legacy nodes replaced with the new ones (if available). The

default name for the new workflow is the name of the old workflow with (migrated) attached

as suffix.

 The original workflow will not be modified throughout the migration process.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 43

Figure 36. Migration Tool: Select the workflow

Click next to get to the next page, as shown below. At this stage the workflow will be

analysed, and all database legacy nodes for which a migration rule exists will be listed here,

along with their equivalent new nodes. The tool also performs a preliminary check and shows

any potential problems. If you agree with the mapping suggestion, click Next to perform the

migration process.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 44

Figure 37. Migration Tool: Show the potential mapping

After the migration process is finished, you can see the migration report like the one shown

below. If any warnings or problems happened during the migration process, corresponding

messages will be shown in the report. You also have the option to save and open the

migration report in HTML format.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 45

Figure 38. Migration Tool: Migration report

The figure below shows the migrated workflow where all database legacy nodes are replaced

by the new database nodes while keeping all the settings intact.

Figure 39. New workflow containing migrated DB nodes

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 46

Node Name Mapping

The table below shows the mapping between the database legacy nodes and the new

database nodes.

Database Legacy nodes New Database nodes

Amazon Athena Connector (planned)

Amazon Redshift Connector Amazon Redshift Connector

Database Apply-Binner DB Apply-Binner

Database Auto-Binner DB Auto-Binner

Database Column Filter DB Column Filter

Database Column Rename DB Column Rename

Database Connection Table Reader DB Reader

Database Connection Table Writer DB Connection Table Writer

Database Connector DB Connector

Database Delete DB Delete

Database Drop Table DB Table Remover

Database GroupBy DB GroupBy

Database Joiner DB Joiner

Database Looping Can be replaced with Parameterized DB

Query Reader

Database Numeric-Binner DB Numeric-Binner

Database Pivot DB Pivot

Database Query DB Query

Database Reader DB Query Reader

Database Row Filter DB Row Filter

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 47

Database Legacy nodes New Database nodes

Database Sampling DB Sampling

Database Sorter DB Sorter

Database SQL Executor DB SQL Executor

Database Table Connector Can be replaced with DB Connector and DB

Table Selector

Database Table Creator DB Table Creator

Database Table Selector DB Table Selector

Database Update DB Update

Database Writer DB Writer

H2 Connector H2 Connector

Hive Connector Hive Connector

Hive Loader DB Loader

Impala Connector Impala Connector

Impala Loader DB Loader

Microsoft SQL Server Connector Microsoft SQL Server Connector

MySQL Connector MySQL Connector

Parameterized Database Query Parameterized DB Query Reader

PostgreSQL Connector PostgreSQL Connector

SQL Extract DB Query Extractor

SQL Inject DB Query Injector

SQLite Connector SQLite Connector

Vertica Connector (planned)

- Microsoft Access Connector

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 48

Database Legacy nodes New Database nodes

- DB Insert

- DB Merge

- DB Column Rename (Regex)

- DB Partitioning

- DB Type Mapping

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 49

Server Setup

This section contains everything related to executing workflows that contain database nodes

on the KNIME Server.

Register your own JDBC drivers on the KNIME Server

In order to be able to execute workflows containing database nodes that use custom or

proprietary JDBC driver files on KNIME Server, you need to register the JDBC driver not only

on the KNIME Analytics Platform but also on the KNIME Server.

The following is the recommended route for systems that have graphical access to the

KNIME Analytics Platform (executor):

1. Register the JDBC driver on KNIME Analytics Platform. Please refer to Register your

own JDBC drivers section for more details.

2. Export the preference file, rename it to preferences.epf, and copy it into the server

repository <server-repository>/config.

3. The preferences.epf file must contain the path to the JDBC jar file, or the folder

containing the JDBC driver. Please refer to Preferences file section of the KNIME Server

Administration Guide for a more in-depth instruction.

Some systems do not have graphical access to the KNIME Analytics Platform (executor) GUI.

In that case the preferences.epf can be manually created, or created on an external machine

and copied into the folder on the server. The relevant lines that must be contained in the

preferences.epf file are:

file_export_version=3.0
\!/=
/instance/org.knime.database/drivers/<DRIVER_ID>/database_type=<DATABASE>
/instance/org.knime.database/drivers/<DRIVER_ID>/driver_class=<DRIVER_CLASS_NAME>
/instance/org.knime.database/drivers/<DRIVER_ID>/paths/0=<PATH_TO_DRIVER_FILE_1>
/instance/org.knime.database/drivers/<DRIVER_ID>/paths/1=<PATH_TO_DRIVER_FILE_2>
/instance/org.knime.database/drivers/<DRIVER_ID>/url_template=jdbc\:protocol\://<HOST>\:
<PORT>/?databaseName=<DATABASE>
/instance/org.knime.database/drivers/<DRIVER_ID>/version=<DRIVER_VERSION>

The colons (":") and backslash ("\") in the url template have to be escaped with

a backslash ("\") so

jdbc\:protocol\://<HOST>\:<PORT>\\databaseName=<DATABASE> will be

resolved to jdbc:protocol://<HOST>:<PORT>\databaseName=<DATABASE>.

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 50

https://docs.knime.com/2019-06/server_admin_guide/index.pdf#preferences-file
https://docs.knime.com/2019-06/server_admin_guide/index.pdf
https://docs.knime.com/2019-06/server_admin_guide/index.pdf

With:

• <DRIVER_ID>: The unique ID of the JDBC driver that needs to match the ID in all KNIME

Analytics Platform that are connected to the server.

• <DRIVER_CLASS_NAME>: The JDBC driver class, e.g oracle.jdbc.OracleDriver for Oracle.

• <PATH_TO_DRIVER>: The path to the JDBC driver files. It may also reference a folder in

some cases (e.g. if the driver requires companion libraries). The digit at the end of the

key is the index of the file. It starts at 0 and needs to be incremented for each additional

file as show in the example above.

• <HOST>, <PORT>, <DATABASE>: Tokens in the JDBC URL template. Please refer to the JDBC

URL Template section for more information.

• <DRIVER_VERSION>: The version of the JDBC driver e.g. 12.2.0.

We’ve bundled a file called preferences.epf.template into the <server-

repository>/config folder. In order for those preferences to be used, you must

edit the file as appropriate, and rename it so that it is named preferences.epf.

Now let’s do an example with the Oracle JDBC driver where we use Oracle as driver ID.

1. Register the Oracle JDBC driver on the KNIME Analytics Platform. Please refer to the

Register your own JDBC drivers section where we have covered this part.

2. Export the preferences in KNIME Analytics Platform via File → Export Preferences. Set

the name as preferences.epf and store it in the server directory <server-

repository>/config.

3. Make sure that the following lines are contained in the preferences.epf (with the path

adapted to your own path).

file_export_version=3.0
\!/=
/instance/org.knime.database/drivers/Oracle/database_type=oracle
/instance/org.knime.database/drivers/Oracle/driver_class=oracle.jdbc.OracleDriver
/instance/org.knime.database/drivers/Oracle/paths/0=/home/knime/Downloads/ojdbc8.jar
/instance/org.knime.database/drivers/Oracle/url_template=jdbc\:oracle\:thin\://<HOST>\:<
PORT>/<DATABASE>
/instance/org.knime.database/drivers/Oracle/version=12.2.0

Server-managed Customization Profiles

KNIME Server allows you to distribute customization profiles, which can be used to

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 51

https://docs.knime.com/2019-06/server_admin_guide/index.pdf#management-client-preferences

automatically distribute JDBC drivers to all connected KNIME Analytics Platform clients. In

order to enable server-managed customization on the server side you have to create one

subdirectory inside <server-repository>/config/client-profiles. Inside this subdirectory,

we need to create a profile file ending with .epf with all the necessary JDBC driver settings:

/instance/org.knime.database/drivers/<DRIVER_ID>/database_type=<DATABASE>
/instance/org.knime.database/drivers/<DRIVER_ID>/driver_class=<DRIVER_CLASS_NAME>
/instance/org.knime.database/drivers/<DRIVER_ID>/paths/0=${profile:location}/<DRIVER_FIL
E>
/instance/org.knime.database/drivers/<DRIVER_ID>/url_template=jdbc\:protocol\://<HOST>\:
<PORT>/<DATABASE>
/instance/org.knime.database/drivers/<DRIVER_ID>/version=<DRIVER_VERSION>

The description of these lines are already explained in previous section. <DRIVER_FILE>

should be replaced with the name of the driver file (including the extension).

Most of these lines can be copied directly from the preferences.epf as explained in the

previous section. The only difference is the path to the JDBC driver. The driver files needs to

be put inside the same folder (this should be the subdirectory we created earlier) as the .epf

file, where together they will be distributed to the KNIME Analytics Platform clients. Since the

path to this profile folder (where the .epf file and the driver files reside) might be different in

every client, we use the variable ${profile:location} to refer to the location of the profile

folder on each client. This variable will then be replaced with the location of the folder on

each client.

From the client-side, they simply have to request this profile from the KNIME Server. There

are three possibilities to do that, which are described in more details in the Client-side setup

section. One possibility to do that is the Preferences page in the KNIME Analytics Platform.

Go to File → Preferences → Customization Profiles to open the Customization Profiles page.

In this page you can choose which KNIME Server to use, and select the profile that we have

created. The changes will take effect after restarting.

Let’s continue the example with the Oracle JDBC driver from the previous section. Now we

want to automatically distribute the Oracle JDBC driver to all KNIME Analytics Platform

clients that are connected to the KNIME Server to ensure that all clients use the same version

and driver id. To do that, we have to:

1. Create a subdirectory inside <server-repository>/config/client-profiles and name

it Oracle.

2. Copy the Oracle JDBC driver into this newly created folder.

3. Create a new empty .epf file, give it a name (let’s say oracle.epf), and copy all

database-related lines from the preferences.epf (see previous section to find out how

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 52

https://docs.knime.com/2019-06/server_admin_guide/index.pdf#client-side-setup

to get this file). The new oracle.epf file should look like this:

/instance/org.knime.database/drivers/Oracle/database_type=oracle
/instance/org.knime.database/drivers/Oracle/driver_class=oracle.jdbc.OracleDriver
/instance/org.knime.database/drivers/Oracle/paths/0=${profile:location}/ojdbc8.jar
/instance/org.knime.database/drivers/Oracle/url_template=jdbc\:oracle\:thin\://<HOST>\:<
PORT>/<DATABASE>
/instance/org.knime.database/drivers/Oracle/version=12.2.0

From the server-side everything is now set up. A client can request this profile from the

KNIME Server. One possibility to do that is the Preferences page in the KNIME Analytics

Platform. Go to File → Preferences → Customization Profiles to open the Customization

Profiles page. In this page you can choose which KNIME Server to use, and select the profile

that we have created. The changes will take effect after restarting.

To see whether the driver has been added, go to File → Preferences → Databases. In this

page, drivers that are added via a KNIME Server customization profile are marked origin:

profile after the driver ID (see figure below). These drivers can be edited but not deleted. To

delete a profile driver, please go to the Customization Profiles page.

Figure 40. DB Preferences page

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 53

Default JDBC Parameters

Users are also allowed to specify JDBC parameters that will be added during connection

creation on the KNIME Server, by adding them to the preferences.epf file located in the

KNIME Server repository (please refer to the section Register your own JDBC drivers on the

KNIME Server to find out more about this file). These parameters take precedence over

values specified in the workflow to execute. To specify an additional JDBC parameter, add

the following lines to the KNIME Server preferences.epf file:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/org.knime.databas
e.util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>/type=<TY
PE>

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/org.knime.databas
e.util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>/value=<V
ALUE>

Where:

• <DRIVER_ID>: The unique ID of the JDBC driver the default parameter should be used

whenever the driver is used to establish a connection to the database.

• <JDBC_PARAMETER>: The name of the JDBC parameter.

• <VALUE>: The value of the JDBC parameter.

• <TYPE>: The type of the JDBC parameter. The following types are supported:

◦ CONTEXT_PROPERTY: Represents the value of a workflow context related property.

The supported context variables are:

▪ context.workflow.name: The name of the KNIME workflow.

▪ context.workflow.path: The mount-point-relative workflow path.

▪ context.workflow.absolute-path: The absolute workflow path.

▪ context.workflow.user: The name of the workflow user that executes the

workflow.

▪ context.workflow.temp.location: The path to the workflow temporary

location.

▪ context.workflow.author.name: The workflow author’s name.

▪ context.workflow.last.editor.name: The workflow last editor’s name.

▪ context.workflow.creation.date: The creation date of the workflow.

▪ context.workflow.last.time.modified: The last modified time of the

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 54

workflow.

◦ CREDENTIALS_LOGIN: The login name from a credentials object whereas the value

contains the name of the credential object to use.

◦ CREDENTIALS_PASSWORD: The password from a credentials object whereas the

value contains the name of the credential object to use.

◦ FLOW_VARIABLE: Represents the value of a workflow variable.

◦ LITERAL: The value that represents itself.

◦ LOCAL_URL: Represents a local, possibly "knime", URL.

KNIME needs to be restarted after importing the preferences keys because they

are only loaded during start-up.

As an example, the following lines are used for user impersonation to access a Kerberos-

secured big data cluster via Apache Impala using a JDBC driver with the ID impala:

/instance/org.knime.database/drivers/impala/attributes/additional/org.knime.database.uti
l.DerivableProperties/knime.db.connection.jdbc.properties/DelegationUID/type=CONTEXT_PRO
PERTY

/instance/org.knime.database/drivers/impala/attributes/additional/org.knime.database.uti
l.DerivableProperties/knime.db.connection.jdbc.properties/DelegationUID/value=context.wo
rkflow.user

Reserved JDBC Parameters

Certain JDBC parameters could cause security issues when a workflow is executed on the

KNIME Server, e.g. delegationUID for Impala/Hive connections using a Simba based driver.

Such parameters can be reserved to prevent users from modifying the values in the client

before executing the workflow on the KNIME Server. To set a parameter as reserved, add the

following lines to the KNIME Server preferences.epf:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/reserved/org.knime.database.
util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>=true

Or the shorter version:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/reserved/*/knime.db.connecti
on.jdbc.properties/<JDBC_PARAMETER>=true

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 55

https://docs.knime.com/2019-06/bigdata_secured_cluster_connection_guide/index.pdf
https://www.simba.com/drivers/

Where:

• <DRIVER_ID>: The unique ID of the JDBC driver the parameter should be reserved

whenever the driver is used to establish a connection to the database.

• <JDBC_PARAMETER>: The name of the JDBC parameter.

KNIME needs to be restarted after importing the preferences keys because they

are only loaded during start-up.

As an example, to set the delegationUID parameter from the previous example (see Default

JDBC Parameters) to reserved for the JDBC driver with the ID impala, add the following line

to the preferences.epf:

/instance/org.knime.database/drivers/impala/attributes/reserved/org.knime.database.util.
DerivableProperties/knime.db.connection.jdbc.properties/DelegationUID=true

KNIME Database Extension Guide

© 2018 KNIME AG. All rights reserved. 56

KNIME AG
Technoparkstrasse 1
8005 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Database Extension Guide
	Table of Contents
	Introduction
	Port Types

	Connecting to a database
	Connecting to predefined databases
	Connecting to other databases
	Advanced Database Options

	Reading from a database
	Database Metadata Browser

	Query Generation
	Visual Query Generation
	Advanced Query Building

	Database Structure Manipulation
	DB Table Remover
	DB Table Creator

	DB Manipulation
	DB Delete
	DB Writer
	DB Insert
	DB Update
	DB Merge
	DB Loader

	Type Mapping
	DB Type Mapper

	Migration
	Workflow Migration Tool
	Node Name Mapping

	Server Setup
	Register your own JDBC drivers on the KNIME Server
	Server-managed Customization Profiles
	Default JDBC Parameters
	Reserved JDBC Parameters

