
KNIME Python Integration Guide
KNIME AG, Zurich, Switzerland

Version 4.6 (last updated on 2022-11-16)

Table of Contents

Introduction. 1

Quickstart . 1

Installing Python with Conda . 3

Setting up the KNIME Python Integration . 3

Installing the extension. 4

Configuring the KNIME Python Integration . 4

Python version support. 14

MDF Reader . 14

Using the Python Scripting nodes . 14

Overview of the nodes . 14

Node configuration settings . 17

Examples of usage . 19

Preferences page . 19

Using the Python Script (Labs) node . 19

Introduction . 19

Configuration . 20

Examples of usage . 22

Known limitations . 24

Bundled environment and its packages . 24

Python (Labs) environment configuration . 26

Configure and export Python environments . 28

Configure the Python environment with Conda Environment Propagation node 28

Export a Python environment with a workflow . 31

Manual configuration of Python environments per node . 34

Load Jupyter notebooks from KNIME . 34

Introduction

This guide describes how to install and configure the KNIME Python Integration to be used

with KNIME Analytics Platform.

Please note that in this guide, we refer to the KNIME Python Integration available since the

v3.4 release of KNIME Analytics Platform, which supports Python 2 and 3.

With the v4.5 release of KNIME Analytics Platform, we are making available the new Python

Script (Labs) node, which provides a significantly more performant way of working with

Python in KNIME Analytics Platform, and supports Python versions 3.6 - 3.9. This node is part

of the KNIME Python Integration (Labs) extension.

Also starting with KNIME Analytics Platform v4.6 the Python Script (Labs) node is provided

with a selection of Python packages to get you started right away. This convenience allows

for using the Python Script (Labs) node without installing, configuring or even knowing

environments.

However, in the following cases:

• When using the KNIME Python Integration which still relies on an existing installation of

Python, and requires it to have certain packages

• In case you need more specific packages to be used by your Python Script (Labs)

nodes

you will still need to use one of the many ways that are supported to install and configure

your own Python environments. Among those, our recommended way is to use the Conda

package manager.

In this guide, we will describe how to install Python and the necessary packages using Conda,

how to configure the KNIME Python Integration, as well as go through the available nodes

and examine their functionality.

Quickstart

This quickstart guide goes through the basic steps required to install the KNIME Python

Integration and its prerequisites. If you’d like a more thorough explanation, please refer to the

sections that follow after this quickstart.

1. First, install the KNIME Python Integration extension. In KNIME Analytics Platform, go to

File → Install KNIME Extensions. The KNIME Python Integration can be found under

KNIME & Extensions or by entering Python Integration into the search box. Optionally,

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 1

https://www.knime.com/whats-new-in-knime-34#Python
https://www.knime.com/whats-new-in-knime-45
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

install the KNIME Python Integration (Labs) extension that contains the new Python

Script (Labs) node as well.



Starting with release v4.6 installing the Python (Labs) extension will

provide you with a selection of Python packages out of the box to get you

started right away. So in that case, for a quick start, you can skip the next

steps.

2. Next, install a distribution of the Conda package manager, for example Miniconda. It

comes with Python included, and is used to manage Python packages and

environments.

3. With Conda and Python installed, go to the Conda Preference page located at File →
Preferences. Select KNIME → Conda from the list on the left. Here, provide the path to

your Conda installation folder (for Miniconda, the default installation path for Windows

is C:\Users\<your-username>\miniconda3\, for Mac: /Users/<your-

username>/miniconda3, and Linux: /home/<your-username>/miniconda3). Once a valid

path has been entered, the Conda version number will be shown.

4. Now, go to the Python Preference page under KNIME → Python. Here, select Conda

under Python environment preferences. Below the Conda version number you can

choose which Conda environment is to be used for Python 3 and Python 2 by selecting

it from a combo box. In case you have already set up an environment containing all the

necessary dependencies for the KNIME Python Integration, just select it from the list

and you are ready to go. If you do not have a suitable environment available, click the

New environment… button, which will open the following dialog:

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 2

https://docs.conda.io/en/latest/miniconda.html

Provide a name for the new environment, choose the Python version you want to use,

and click the Create new environment button. This creates a new Conda environment

containing all the required dependencies for the KNIME Python Integration.


Depending on your internet connection, the environment creation may

take a while as all packages need to be downloaded and extracted.

Once the environment is successfully created, the dialog closes and the new

environment is selected automatically.

Installing Python with Conda

This section describes how to install and configure Python to be used with KNIME Python

Integration. We recommend using Conda, which is a package and environment manager that

simplifies the process of working with multiple versions of Python and different sets of

packages by encapsulating them in so-called Conda environments. A Conda environment is

essentially a folder that contains a specific Python version and the installed packages. This

means you can have several different Python versions installed on your system at the same

time in a clean and easy-to-maintain manner. When used with KNIME Analytics Platform, this

is especially useful, as it allows you to use Python 3 and Python 2 at the same time without

running into version issues. Furthermore, Conda is able to create predefined environments

with a single command and makes it easy to add Python packages to existing ones.

There are different flavours of Conda available. Miniconda, for instance, is a minimal

installation of the package and environment manager, together with your chosen version of

Python. Note that after installation of Miniconda, only the base environment will contain that

version of Python, and you will be able to create Conda environments configured with any

version of Python that you would like to specify.

Indeed, we discuss the various ways of setting up Conda environments to include the

dependencies needed for KNIME Python Integration in the Configure and manage Python

environments section below.

With Python installed, we can now proceed to Setting up the KNIME Python Integration.

Setting up the KNIME Python Integration

This section describes how to install and configure the KNIME Python Integration using an

existing installation of Python. We recommend using the Conda package and environment

manager, which includes Python, and makes the set up process straightforward. If you

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 3

https://docs.conda.io/en/latest/miniconda.html

haven’t yet installed Python with Conda, please refer to the Installing Python with Conda

section.

Note that you can also bypass using Conda altogether and configure the KNIME Python

Integration with corresponding Python environments manually, which we will also cover

below.

Installing the extension

From KNIME Analytics Platform, go to File → Install KNIME Extensions and search for Python

Integration. The KNIME Python Integration extension should appear in the list. You can then

select the extension and proceed through the installation wizard.

Configuring the KNIME Python Integration

Configure and manage Python environments

With the extension installed, we now need to set up the appropriate Python environments and

configure KNIME Analytics Platform to use them. Navigate to the Preferences page for the

KNIME Python Integration by going to File → Preferences, and then selecting KNIME →
Python from the list on the left. The page will present you with different options for

configuring the Python environment, namely:

• Conda environments:

◦ Automatic via the Preference dialog (recommended)

◦ Manual via YAML files

• Manually configured Python environments

Conda environments

Automatic (recommended)

First, in the KNIME Analytics Platform preferences window, configure the Path to the Conda

installation directory under KNIME > Conda, as shown in the following figure.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 4

You will need to provide the path to the folder containing your installation of Conda (for

Miniconda, the default installation path is C:\Users\<your-username>\miniconda3\ for

Windows, /Users/<your-username>/miniconda3 for Mac, and /home/<your-

username>/miniconda3 for Linux). Once you have entered a valid path, the installed Conda

version will be displayed.

Now go to KNIME > Python and select Conda under Python environment configuration. The

current page should look like the screenshot shown below.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 5

Underneath the Conda version number, you can choose which environment should be used

for Python 3 and Python 2 by selecting it from the corresponding combo box. If you have

already set up a Python environment containing all the necessary dependencies for the

KNIME Python Integration, just select it from the list and you are ready to go. Otherwise, click

the New environment… button, which will open the following dialog:

Provide a name for the new environment, choose the Python version you want to use, and

click the Create new environment button. This creates a new Conda environment containing

all the required dependencies for the KNIME Python Integration. Refer to the Python version

support section for details on which versions of Python are compatible with the KNIME

Python Integration.


Depending on your internet connection, the environment creation may take a

while as all packages need to be downloaded and extracted.

Once the environment is successfully created, the dialog will close and the new environment

will be selected automatically. If everything went well, the Python version will be shown below

the environment selection, and you are ready to go.

Manually create a Conda environment

If you do not want to create a Conda environment automatically from the Preferences page,

you can create one manually using a YAML configuration file. Such files list all the important

information about the Conda environment that will be created, such as the environment

name, the packages to be installed, and the Conda channels where those packages are

hosted. We have provided two such configuration files below (one configuration file to create

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 6

a new Python 3 environment and one for Python 2). They list all of the dependencies needed

for the KNIME Python Integration:

py3_knime.yml

name: py39_knime # Name of the created environment
channels: # Repositories to search for packages
- defaults
- anaconda
- conda-forge
dependencies: # List of packages that should be installed
- python=3.9 # Python
- py4j # used for KNIME <-> Python communication
- nomkl # Prevents the use of Intel's MKL
- pandas # Table data structures
- jedi<=0.17.2 # Python script autocompletion
- python-dateutil # Date and Time utilities
- numpy # N-dimensional arrays
- cairo # SVG support
- pillow # Image inputs/outputs
- matplotlib # Plotting
- pyarrow=6.0 # Arrow serialization
- IPython # Notebook support
- nbformat # Notebook support
- scipy # Notebook support
- jpype1 # Databases
- python-flatbuffers<2.0 # because tensorflow expects a version before 2
- h5py<3.0 # must be < 3.0 because they changed whether str or byte is returned
- protobuf>3.12
- libiconv # MDF Reader node
- asammdf=5.19.14 # MDF Reader node

py2_knime.yml

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 7

img/py3_knime.yml
img/py2_knime.yml

name: py2_knime # Name of the created environment
channels: # Repositories to search for packages
- defaults
- anaconda
- conda-forge
dependencies: # List of packages that should be installed
- python=2.7 # Python
- pandas=0.23 # Table data structures
- jedi=0.13 # Python script autocompletion
- parso=0.7.1 # Jedi dependency this is the last version compatible with 2.7
- python-dateutil=2.7 # Date and Time utilities
- numpy=1.15 # N-dimensional arrays
- cairo=1.14 # SVG support
- pillow=5.3 # Image inputs/outputs
- matplotlib=2.2 # Plotting
- pyarrow=0.11 # Arrow serialization
- IPython=5.8 # Notebook support
- nbformat=4.4 # Notebook support
- scipy=1.1 # Notebook support
- jpype1=0.6.3 # Databases
- protobuf=3.5 # Serialization for deprecated Python nodes



The above configuration files only contain the Python packages that the KNIME

Python Integration depends on. If you want to use additional Python packages,

you can either add the name of the package at the end of the configuration file

or add them after the environment has been created.

For example, for Python 3 you can use the py3_knime.yml and download it to any folder on

your system (e.g. your home folder). In order to create an environment from this file, open a

shell (Linux), terminal (Mac), or Anaconda prompt (Windows, comes with Conda and can be

found by entering anaconda in Windows Search), change the directory to the folder that

contains the configuration file and execute the following command:

conda env create -f py3_knime.yml

This command creates a new environment with the name provided at the top of the

configuration file (which you are welcome to change, of course). It also downloads and

installs all of the listed packages (depending on your internet speed, this may take a while).

If you want to use both Python 3 and Python 2 at the same time, just repeat the above steps

using the respective configuration file.


The list of dependencies for Python 3 and Python 2 is almost the same,

however the version numbers change.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 8

img/py3_knime.yml

After Conda has successfully created the environment, Python is all set up and ready to go.

Further information on how to manage Conda environments can be found here.

Manually installing additional Python packages

The YAML configuration files listed above only contain the packages to be installed so that

the KNIME Python Integration works properly. Hence, if you want to use Python packages

other than the ones listed in the configuration files, these can be easily added manually after

the environment has been created. E.g. if you want to use functionality from scikit-learn in

KNIME Python nodes, you can use the following command in the command-line interpreter of

your operating system:

conda install --name <ENV_NAME> scikit-learn

Just replace <ENV_NAME> with the name of the environment where you would like to install the

package.


You can easily specify the version of the package with e.g. scikit-

learn==0.20.2

Further information on how to manage Conda packages can be found here.

Manually configured Python environments

The alternative to using the Conda package and environment manager is to manually set up

the Python installation. If you choose Manual under Python environment configuration, you

will have the following options:

1. Point KNIME Analytics Platform to a Python executable of your choice

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 9

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

2. Point KNIME Analytics Platform to a start script which activates the environment you

want to use for Python 2 and Python 3 respectively. This option assumes that you have

created a suitable Python environment earlier with a Python virtual environment

manager of your choice. In order to use the created environment for the KNIME Python

Integration, you need to create a start script (shell script on Linux and Mac, batch file on

Windows). The script has to meet the following requirements:

◦ It has to start Python with the arguments given to the script (please make sure

that spaces are properly escaped)

◦ It has to output standard and error out of the started Python instance

◦ It must not output anything else.

Here we provide an example shell script for the Python environment on Linux and Mac.

Please note that on Linux and Mac you additionally need to make the file executable

(i.e. chmod gou+x py3.sh).

#! /bin/bash
Start by making sure that the anaconda folder is on the PATH
so that the source activate command works.
This isn't necessary if you already know that
the anaconda bin dir is on the PATH
export PATH="<PATH_WHERE_YOU_INSTALLED_ANACONDA>/bin:$PATH"

conda activate <ENVIRONMENT_NAME>
python "$@" 1>&1 2>&2

On Windows, the script looks like this:

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 10

@REM Adapt the folder in the PATH to your system
@SET PATH=<PATH_WHERE_YOU_INSTALLED_ANACONDA>\Scripts;%PATH%
@CALL activate <ENVIRONMENT_NAME> || ECHO Activating python environment failed
@python %*



These are example scripts for Conda. You may need to adapt them for

other tools by replacing the Conda-specific parts. For instance, you will

need to edit them in order to point to the location of your environment

manager installation and to activate the correct environment.

After creating the start script, you will need to point KNIME Analytics Platform to it by

specifying the path to the script on the Python Preferences page.

Figure 1. KNIME Python Preferences page. Here you can set the path to the executable

script that launches your Python environment.

If you like, you can have configurations for both Python 2 and Python 3 (as is shown

above). Just select the one that you would like to have as the default. If everything is

set correctly, the Python version is now shown in the dialog window and you are ready

to go.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 11

Serialization library

You can choose which serialization library should be used by the KNIME Python Integration

to transfer data from KNIME Analytics Platform to Python.

 This option does not usually need to be changed and can be left as the default.

Some of these serialization libraries have additional dependencies stated below, however if

you followed the automatic Conda environment set up, all required dependencies are already

included (see the YAML configuration files for the required packages). Currently, there are

three options:

• Flatbuffers Column Serialization (default & recommended): no additional dependencies

• Apache Arrow: provides a significant performance boost, depends on pyarrow version

4.0.1

• CSV (Experimental): depends on pandas version 0.23


Note that the serialization options do not apply to the KNIME Python Integration

(Labs) extension.

Advanced

A further Advanced option is also available to set up the options of the pre-launched Python

processes. In the background, KNIME Analytics Platform initializes and maintains a pool of

Python processes that can be used by individual Python nodes, reducing the start-up cost

when executing any Python node. Here, you can set up the pool size in the field Maximum

number of provisioned processes, and the duration in minutes before recycling idle processes

in the pool in the field Expiration duration of each process (in minutes).

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 12

Troubleshooting

Mac Matplotlib

On Mac, there may be issues with the matplotlib package. The following error:

libc++abi.dylib: terminating with uncaught exception of type NSException

can be resolved by executing the following commands:

mkdir ~/.matplotlib
echo "backend: TkAgg" > ~/.matplotlib/matplotlibrc

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 13

Python version support

The KNIME Python Integration supports both Python 2 (2.7) and 3 (3.6 - 3.9), while the newly

released KNIME Python Integration (Labs) supports Python versions 3.6 - 3.10.

MDF Reader

Similar to the KNIME Deep Learning Integration, the MDF Reader node requires certain

Python packages to be installed in the Python 3 environment. These will be installed

automatically if you set up your Python environment via the Conda option on the Python

Preferences page (see here). Of course, you can manually install the required packages as

well:

numpy
libiconv
asammdf=5.19.14

Using the Python Scripting nodes

Overview of the nodes

The KNIME Python Integration provides a wide array of nodes. Once the extension has been

installed and configured, you are able to find the available nodes in the Node Repository area

of KNIME Analytics Platform by navigating to Scripting → Python, or simply by entering

Python in the search field.

Additionally, all the nodes included in the KNIME Python Integration can be found on the

KNIME Hub, complete with detailed descriptions of their functionality, inputs and outputs,

configuration dialog, and much more. In the Related workflows & nodes section of the KNIME

Hub page for each node, you are able to see a list of published workflows that use this

particular Python node. You can easily download and explore published nodes, workflows,

and components locally by dragging & dropping the special icon into the corresponding area

of KNIME Analytics Platform.

Here we present an overview of the nodes available in the KNIME Python Integration.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 14

https://docs.knime.com/2021-06/deep_learning_installation_guide/index.html#_introduction
https://hub.knime.com/knime/extensions/org.knime.features.python2/latest



All nodes described in this section are designed to execute Python scripts in a

local Python environment of your choice, support Python 2 and 3, and allow to

import Jupyter Notebooks as Python modules via the knime_jupyter module

available in the corresponding node’s Python workspace.

Python Source

The node outputs a KNIME table.

Python Script

Unlike the Python Source node, this node allows for multiple input and output ports of various

types, which can be dynamically added or removed via the three dots button located in the

bottom left corner of the node. The default input/output ports use KNIME data tables, with

additional options being pickled objects for input and output, and images for output.

Python Edit Variable

As input and output, the node takes flow variables. The Python script can edit flow variables

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 15

https://docs.knime.com/2022-06/analytics_platform\analytics_platform_flow_control_guide\index.pdf#flow-variables

that have been provided as input, as well as create new flow variables.



Technically, all Python nodes available in the KNIME Python Integration are able

to edit and create flow variables, which can then be propagated using the

hidden flow variable output port that every node has. These ports can be

revealed by right-clicking the node in your KNIME Analytics Platform Workflow

editor, and selecting Show Flow Variable Ports. Moreover, flow variables are

automatically propagated to downstream nodes via other types of connections

as well.

Python View

The node outputs an image.

Python Object Reader

The Python script inside the node reads a Python object, which can be a pickle or any

datatype that can be pickled. The output of the node can then be provided as input to the

Python Script node, for example.

Python Object Writer

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 16

The node expects an object as input, which can contain any datatype that can be pickled.

Python Learner

Given a KNIME data table as input, the node is designed to output a trained model as an

object, which can be of any datatype that can be pickled.

Python Predictor

Given a trained model object and a KNIME data table as input, the node is designed to

produce inference by applying the model to the data inside the Python script. The node

outputs a KNIME data table.

Node configuration settings

Each Python node comes with a set of configuration settings specific to the KNIME Python

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 17

Integration nodes:

• Script

The code editor section of the node configuration dialog. The code for your Python

script goes here. In dedicated areas of this dialog, you can see the input and output

data, the available flow variables, as well as the variables of the current Python

workspace.



In the Script section of the configuration dialog, you have two options of

executing your Python script without leaving the dialog itself: Execute

script, which is useful if you want to quickly check if your code is working

as intended; and Execute selected lines, which allows you to run specific

lines inside your script. This is convenient for debugging purposes, and,

additionally, enables exploratory programming when, for instance,

working with imported Jupyter Notebooks as described in this section of

the guide.



Additionally, the code editor in the Script section provides code

autocompletion. By typing a . and pressing ctrl-space (or command-space

on Mac), you can view the available properties and methods for a given

variable, or the classes and functions provided by a module. For this

functionality to work, make sure that the Jedi package is installed in your

Python environment. If your Python environment was automatically

created on the Python Preferences page as described in this section, it

will already contain Jedi.

• Options

Here you can configure certain aspects of the behavior of the Python node, such as

limiting the number of rows from the input table (if applicable) available to the Python

script when executing inside the configuration dialog, or handling missing values in

your data.

• Executable Selection

This section allows you to choose which version of Python to use in this particular node

(this option defaults to the version of Python selected in Python Preferences as seen in

the Configure and manage Python environments section). Here you can also make use

of the Conda Environment Propagation flow variable as described in the Configure and

export Python environments section of this guide.

• Templates

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 18

For each Python node, this section of the configuration dialog will contain a number of

templates that demonstrate the basic usage of the node. You can copy sections of the

provided Python code into your script, or use the entire template as a starting point.

Additionally, you can create custom templates using your Python code from the Script

tab of the configuration dialog.

• Flow Variables

This section of the configuration dialog allows you to automate certain other aspects of

the node’s configuration, including some of the options mentioned above.

You can find more details about the configuration options for each node in the KNIME Python

Integration on the corresponding KNIME Hub page for the node, or in the Description area of

KNIME Analytics Platform after selecting the node in the Workflow editor.

Examples of usage

You can find a comprehensive and diverse list of workflows using the nodes available in the

KNIME Python Integration by searching for Python on the KNIME Hub and navigating to the

Workflows section of the search results.

Preferences page

By going to Preferences in KNIME Analytics Platform, and then navigating to KNIME →
Python, you can find additional settings that we described in detail in the Configuring the

KNIME Python Integration section.

Using the Python Script (Labs) node

Introduction

With the v4.5 release of KNIME Analytics Platform, we are introducing the Python Script

(Labs) node. Currently available as part of the KNIME Python Integration (Labs) extension

(which you can install following the steps described here), this node provides a glimpse into

the future of Python in KNIME Analytics Platform.

Feature highlight

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 19

https://hub.knime.com/search?q=python&type=Workflow
https://www.knime.com/whats-new-in-knime-45
https://kni.me/n/dQ5A2CMdtDriX4ro
https://kni.me/n/dQ5A2CMdtDriX4ro
https://kni.me/e/xZE5dJbnuaKIpeyR

• Improved performance

• A new API via the knime_io module

• Support conversion to both Pandas DataFrames and PyArrow Tables

• Support for arbitrarily large datasets using batches.

Thanks to the new backend powered by Apache Arrow, the new Python Script (Labs) node

provides a significant boost in processing performance and data transfers between Python

and KNIME Analytics Platform.

For a complete documentation of the new API please refer to KNIME Python Script (Labs)

API documentation.



To achieve biggest possible performance gains, we recommend configuring

your workflows to use Columnar Backend which is included in KNIME Analytics

Platform as of the v4.5 release. Right-click the appropriate workflow in KNIME

Explorer, select Configure…, then choose the Columnar Backend option under

Selected Table Backend.

Another notable change is the introduction of the knime_io module. This module provides a

new, more Pythonic way of accessing and working with data inside your Python scripts.

An exciting new functionality that comes with the knime_io module is the ability to process

data in batches. Whereas previously the size of the input data was limited by the amount of

RAM available on the machine, the Python Script (Labs) node can process arbitrarily large

amounts of data by accessing it in batches via the .batches() method of the input table.

We will demonstrate the use of knime_io in the Examples section below.

Configuration

Similar to the Python nodes found in the non-Labs KNIME Python Integration, the Python

Script (Labs) node contains several sections in the configuration dialog.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 20

https://arrow.apache.org/
https://knime-python.readthedocs.io/en/stable/
https://knime-python.readthedocs.io/en/stable/
https://hub.knime.com/knime/extensions/org.knime.features.core.columnar/latest
https://www.knime.com/whats-new-in-knime-45

Script

As the figure above demonstrates, functionality of the input, output, and flow variable panes

is condensed in the knime_io module. We demonstrate the new way of accessing data in the

Examples of usage section below.

Adding and removing ports

Similar to the non-Labs Python Script node, the new node allows adding and removing input

and output ports by clicking the three dot button located in the bottom left corner of the node.

The default input/output ports use KNIME data tables, with additional options being pickled

objects for input and output, and images for output.

Other

For an overview of the other sections of the configuration dialog, please refer to this section

of the guide.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 21

Examples of usage

When you create a new instance of the Python Script (Labs) node, the code editor will already

contain starter code, in which we import the knime_io module.

Accessing data

As mentioned before, knime_io provides a new way of accessing the data coming into the

node. Namely, the input and output tables and objects can now be accessed from respective

Python lists

• knime_io.input_tables[i] and knime_io.output_tables[i]

• knime_io.input_objects[i] and knime_io.output_objects[i],

• knime_io.output_images[i] to output images, which must be either a string describing

an SVG image or a byte array encoding a PNG image,

where i is the index of the corresponding table/object/image (0 for the first

input/output port, 1 for the second input/output port, and so on).

Flow variables can be accessed from the dictionary:

• knime_io.flow_variables['name_of_flow_variable'].

Converting input tables to Pandas DataFrames and PyArrow Tables

The knime_io module provides a simple way of accessing the input data as a Pandas

DataFrame or PyArrow Table. This can prove quite useful since the two data representations

and corresponding libraries provide a different set of tools that might be applicable to

different use-cases.

• Converting the first input table to a Pandas DataFrame using the to_pandas() method:

input_df = knime_io.input_tables[0].to_pandas()

• Converting the first input table to a PyArrow Table using the to_pyarrow() method:

input_table = knime_io.input_tables[0].to_pyarrow()

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 22

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html

Working with batches

The Python Script (Labs) node, together with the knime_io module, allows efficiently

processing larger-than-RAM data tables by utilising batching.

1. First, you need to initialise an instance of a table to which the batches will be written

after being processed:

processed_table = knime_io.batch_write_table()

2. Calling the batches() method on an input table returns an iterable, items of which are

batches of the input table that can be accessed via a for loop:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():

3. Inside the for loop, the batch can be converted to a Pandas DataFrame or a PyArrow

Table using the methods to_pandas() and to_pyarrow() mentioned above:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()

4. At the end of each iteration of the loop, the batch should be appended to the table

initialised in 1:

processed_table = knime_io.batch_write_table()
for batch in knime_io.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)



The Script section of the configuration dialog for the Python Script (Labs) node

provides code autocompletion. By typing a . and pressing ctrl-space (or

command-space on Mac), you can view the available properties and methods for

a given variable, or the classes and functions provided by a module. For

instance, by typing batch., you can see that it contains properties such as

num_rows and column_names. For this functionality to work, make sure that the

Jedi package is installed in your Python environment. If your Python

environment was automatically created on the Python Preferences page as

described in this section, it will already contain Jedi.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 23

Note that the Templates section of the configuration dialog for the node provides starter

code for the use-cases described above.

Porting old Python scripts

Adapting your old Python scripts to work with the new Python Script (Labs) node is as easy

as adding the following to your code:

import knime_io
input_table_1 = knime_io.input_tables[0].to_pandas()

the old script goes here

knime_io.output_tables[0] = knime_io.write_table(output_table_1)



Note that the numbering of inputs and outputs in the Python Script (Labs) node

is 0-based - keep that in mind when porting your scripts from the other Python

nodes, which have a 1-based numbering scheme (e.g.

knime_io.input_tables[0] in the Python Script (Labs) node corresponds to

input_table_1 in the other Python nodes).

Further examples

You can find an example of the usage of the Python Script (Labs) node on KNIME Hub.

Known limitations

• The Python Script (Labs) node only supports Python versions 3.6 - 3.9.

• Extension data types like KNIME Image Processing images or RDKit molecules are not

yet supported.

• The new API described in this section is part of KNIME Labs, and is currently under

active development. This means that features might change with future releases.

Bundled environment and its packages

Starting from the v4.6 release, the Python Script (Labs) is provided with a selection of Python

packages to get you started right away. This convenience allows for using the Python Script

(Labs) node without installing, configuring or even knowing environments. If you need more

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 24

https://kni.me/w/ckSPW6X85b78sTxR
https://www.knime.com/whats-new-in-knime-46

packages, you can still configure your own Python environment as explained in the next

section.

To allow a jumpstart into Python scripting without the need of touching environments, the

shipped bundled environment has a set of packages (i.e. Python libraries) already included.

As not everybody needs everything, this set is quite limited to allow for many scripting

scenarios while keeping the bundled environment small.

Thus, the list of included packages is the following (with some additional dependencies):

• beautifulsoup4

• cloudpickle

• ipython

• jedi<=0.17.2

• matplotlib-base

• nbformat

• nltk

• numpy>=1.22

• pandas

• packaging

• pillow

• py4j

• pyarrow>=7

• python=3.9

• pytz

• pyyaml

• requests

• scikit-learn

• scipy

• seaborn

• statsmodels

If you use the bundled environment, you use the currently (August 2022) supported and

tested versions:

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 25

• nomkl >=1.0,<1.1.0a0

• numpy >=1.23.0,<1.23.1.0a0 if Linux; >=1.22.4,<1.22.5.0a0 if Windows/MacOS

• packaging >=21.3,<21.4.0a0

• pandas >=1.4.3,<1.4.4.0a0 if Linux; >=1.4.2,<1.4.3.0a0 if Windows/MacOS

• py4j >=0.10.9,<0.10.10.0a0

• pyarrow >=7.0.0,<7.0.1.0a0

• python >=3.9.13,<3.9.14.0a0 if Python=3.9; >=3.10.5,<3.10.6.0a0 if Python=3.10

• python-dateutil >=2.8.2,<2.8.3.0a0

• python_abi 3.9.* _cp39 if Python=3.9; 3.10. *_cp310 if Python=3.10

Python (Labs) environment configuration

As explained in the previous section the KNIME Python Script (Labs) extension comes with a

pre-installed Python environment. However it is still possible to configure your own Python

environment, with the same options we described in the section Configuring the KNIME

Python Integration. However, in this case, you will find the configuration options for the

Python Script (Labs) nodes in the KNIME Analytics Platform preferences (File > Preferences)

under KNIME > Python (Labs).

The default configuration is to use the Bundled Python environment but you can select also:

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 26

• Conda: Here you can choose the Python 3 Conda environment that will be used by all

the Python Script (Labs) nodes. This can either be created in the same way as it is

described in the Conda environments section of this guide, or using the new (as of

KNIME 4.6.3) knime-python-scripting metapackages provided in the knime conda

channels. With those, you can create an environment equivalent to the bundled

environment by calling:

conda create --name <ENV_NAME> -c knime -c conda-forge knime-python-scripting=4.6
python=3.9

You can choose between different Python versions (currently 3.9 and 3.10) and select the

current KNIME version. See the knime conda channel for the available versions.

Note that if you want to install additional packages in this environment, you should use the

conda-forge channel instead of the anaconda channel like so:

conda install --name <ENV_NAME> -c conda-forge <PACKAGE>

• Manual: Here you can point KNIME Analytics Platform to a Python executable of your

choice as it is described in the Manually configured Python environments section of

this guide

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 27

https://anaconda.org/knime/knime-python-scripting/files

Configure and export Python environments

Besides setting up Python for your entire KNIME workspace via the Preferences page, you

can also use the Conda Environment Propagation node to configure custom Python

environments and then propagate them to downstream Python nodes. This node also allows

you to bundle these environments together with your workflows, making it easy for other

people (and other machines) to replicate the exact same environment that the workflow is

meant to be executed in. This makes workflows containing Python nodes significantly more

portable and less error-prone.

Configure the Python environment with Conda Environment
Propagation node

To be able to make use of the Conda Environment Propagation node, you need to follow

these steps:

1. On your local machine, you should have Conda set up and configured in the

Preferences of the KNIME Python Integration as described in the Conda environments

section

2. Open the node configuration dialog and select the Conda environment you want to

propagate and the packages to include in the environment in case it will be recreated

on a different machine

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 28

https://kni.me/n/7HrPteTMsla4bZml

3. The Conda Environment Propagation node outputs a flow variable which contains the

necessary information about the Python environment (i.e. the name of the environment

and the respective installed packages and versions). The flow variable has

conda.environment as the default name, but you can specify a custom name. This way

you can avoid name collisions that may occur when employing multiple Conda

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 29

Environment Propagation nodes in a single workflow.

In order for any Python node in the workflow to use the environment you just created, you

need to:

1. Connect the flow variable output port of Conda Environment Propagation node to the

input flow variable port of a Python node

run a python script

Conda Environment
Propagation Python Script

run a python script

Conda Environment
Propagation Python Script



Please note that, since flow variables are propagated also through

connections that are not flow variable connections, the flow variable

propagating the Conda environment you created with the Conda

Environment Propagation node will also be available for all downstream

nodes.

2. Successively open the configuration dialogue of the Python nodes in the workflow that

you want to make portable, go to the Executable Selection tab, and select:

a. The Python version to be used by the current node

b. Whether you want to use the Conda flow variable and then select the name of the

Conda flow variable you want to use, or if you want the node to use the Python

environment selected in the KNIME Preferences, which is the default behaviour.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 30

Export a Python environment with a workflow

Once you configured the Conda Environment Propagation node and set up the desired

workflow, you might want to run this workflow on a target machine, for example a KNIME

Server instance.

1. Deploy the workflow by uploading it to the KNIME Server, sharing it via the KNIME Hub,

or exporting it. Make sure that the Conda Environment Propagation node is reset before

or during the deployment process.

2. On the target machine, Conda must also be set up and configured in the Preferences of

the KNIME Python Integration. If the target machine runs a KNIME Server, you may need

to contact your server administrator and/or refer to the Server Administration Guide in

order to do this.

3. During execution (on either machine), the node will check whether a local Conda

environment exists that matches its configured environment. When configuring the

node, you can choose which modality will be used for the Conda environment validation

on the target machine. Check name only will only check for the existence of an

environment with the same name as the original one, Check name and packages will

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 31

https://docs.knime.com/2022-06/server_admin_guide/index.pdf

check both name and requested packages, while Always overwrite existing environment

will disregard the existence of an equal environment on the target machine and will

recreate it.



Depending on the above configuration, the execution time of the node will

vary. For instance, a simple Conda environment name check will be much

faster than a name and package check, which, in turn, will be faster than a

full environment recreation process.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 32


Please be aware that exporting Python environments between systems that run

different Operating Systems might cause some libraries to conflict.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 33

Manual configuration of Python environments per node

In case you do not want to use the Conda Environment Propagation node’s functionality, you

can also configure individual nodes manually to use specific Python environments. This is

done via flow variables python2Command and python3Command that each Python scripting node

offers under the Flow Variables tab in its configuration dialog. Both variables accept the path

to a Python start script like in the Manual case described above. Which of the two flow

variables is respected depends on whether a node is using Python 2 or Python 3. This can

either be configured via option Use Python Version under the Executable Selection tab in the

node’s configuration dialog or via flow variable pythonVersionOption which accepts either

python2 or python3 as value.

Load Jupyter notebooks from KNIME

Existing Jupyter notebooks can be accessed within Python Scripting nodes using the

knime_jupyter Python module (knime_jupyter will be imported automatically). Notebooks

can be opened via the function knime_jupyter.load_notebook, which returns a standard

Python module. The load_notebook function needs the path to the folder that contains the

notebook file and the filename of the notebook as arguments. After a notebook has been

loaded, you can call functions that are defined in the code cells of the notebook like any other

function of a Python module. Furthermore, you can print the textual content of each cell of a

Jupyter notebook using the function knime_jupyter.print_notebook. It takes the same

arguments as the load_notebook function.

An example script for a Python Script node loading a notebook could look like this:

Path to the folder containing the notebook, e.g. the folder 'data' contained
in my workflow folder
notebook_directory = "knime://knime.workflow/data/"

Filename of the notebook
notebook_name = "sum_table.ipynb"

Load the notebook as a Python module
my_notebook = knime_jupyter.load_notebook(notebook_directory, notebook_name)

Print its textual contents
knime_jupyter.print_notebook(notebook_directory, notebook_name)

Call a function 'sum_each_row' defined in the notebook
output_table = my_notebook.sum_each_row(input_table)

The load_notebook and print_notebook functions have two optional arguments:

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 34

• notebook_version: The Jupyter notebook format major version. Sometimes the version

can’t be read from a notebook file. In these cases, this option allows to specify the

expected version in order to avoid compatibility issues. Should be an integer.

• only_include_tag: Only load cells that are annotated with the given custom cell tag

(since Jupyter 5.0.0). This is useful to mark cells that are intended to be used in a

Python module. All other cells are excluded. This is e.g. helpful to exclude cells that do

visualization or contain demo code. Should be a string.



The Python nodes support code completion similar to an IDE. Just hit ctrl-

space (command-space on Mac) e.g. after knime_jupyter. in order to show the

available methods and documentation (knime_jupyter refers to the imported

knime_jupyter Python module, e.g. see script example above).



The Jupyter notebook support for the KNIME Python Integration depends on

the packages IPython, nbformat, and scipy, which are already included if you

either used the automatic Conda environment creation option in the Python

Preferences, or the YAML configuration files.

You can find example workflows using the knime_jupyter Python module on our EXAMPLES

server.

KNIME Python Integration Guide

© 2022 KNIME AG. All rights reserved. 35

https://www.knime.com/example-workflows
https://www.knime.com/example-workflows

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Python Integration Guide
	Table of Contents
	Introduction
	Quickstart
	Installing Python with Conda
	Setting up the KNIME Python Integration
	Installing the extension
	Configuring the KNIME Python Integration
	Python version support
	MDF Reader

	Using the Python Scripting nodes
	Overview of the nodes
	Node configuration settings
	Examples of usage
	Preferences page

	Using the Python Script (Labs) node
	Introduction
	Configuration
	Examples of usage
	Known limitations
	Bundled environment and its packages
	Python (Labs) environment configuration

	Configure and export Python environments
	Configure the Python environment with Conda Environment Propagation node
	Export a Python environment with a workflow
	Manual configuration of Python environments per node

	Load Jupyter notebooks from KNIME

