Open for Innovation

KNIM

KNIME Edge Installation Guide

KNIME AG, Zurich, Switzerland
Version 1.1 (last updated on 2024-07-10)

Table of Contents

INtrOdUCHiON. . ..o 1
KNIME Edge Architecture e e e e 1
Components of KNIME EAQge e 1
KNIME Server (KNIME Edge Control Plane) i .. 1
KNIME Edge Server Adapter. i e e e 2
KNIME Edge Operator. e 2
KNIME Edge Inference Agent. o e e 2
KONG APl Gatewayo e 2
MiNIO . . . 3
Inference Deployment (Kubernetes CUStom RESOUrCe)t 3
Installation Planning 3
KNIME Server Large e e e e e 3
Kubernetes oo 3
Helm CLI. . . e 4
KUbecCtl CLI. .. 4
Capacity planning & considerations 4
Working with the KNIME Artifact Registry. 5
Logging in with a knime.comuser. 5
Helm repository configuration. 6
Installinganew KNIME Edge cluster. i 7
Applyinga KNIME Edge License e 7
KNIME Edge chart e e 7
Fetching the Helm values file for the KNIME Edgechart 7
Values file configuration. 8
Installingthe KNIME Edgechart i 8
Confirming a KNIME Edge clusteris operational 9
Verify Installation of KNIME Edge Cluster 9
Interpretingthe podsinthecluster........ 10
Testing the KNIME Edge Server Adapter 10
Advanced Operations and Troubleshooting 11
Error: Failed topullimage. 11
Error: Unableto Access HOSt. o i 13
Upgrading an existing KNIME Edge chart. 14

Error: Helm Upgrade is invalid due to Required Value 14

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

KNIME Edge Installation Guide

Introduction

This guide outlines the requirements, considerations, and steps for creating a KNIME Edge
cluster.

KNIME Edge Architecture

Below is a high-level diagram of the architectural components within KNIME Edge.

KNIME Edge Architecture Diagram

Edge Network IT Centralized Network

|
|
|
! KNIME Server
Edge Hardware or Cloud Instance | (As Edge Control Plane)
K3s Environment !
(Kubernetes compliant) :]]
| Training Inference
Kubernetes API/ Events I Worfklows Workflows Edge User
I (i.e. Data Scientist)
System Custom : b
Pods Pods I Edge Mgmt
Metrics X (Webportal)
Prometheus’
@___, Kong Gateway is {) | A — Edge
Kong API deployed to handle Database
External Gateway external fraffic into ! (' PostgreSaL
Trafic Edge cluster : » Edge API
Workflows Used for state
1 persistence in
Inference
KNIME Deployment KNIME] e KNIME Edge
Edge —>* CRD <«—— Server 1
Operator Adapter |
|
1 Posalh k Boundary
]
|
MinlO Local Cache |
Workflow and Log Cache .
|
—
, 1 Docker Registry
T T T 1 (Edge container images and helm charts)
|
|
Service / Pods Persistent
7 Ingress Volume(s) HPA 1
|
|
|
|
|

Components of KNIME Edge

KNIME Server (KNIME Edge Control Plane)

KNIME Server is used as the "control plane" to manage one or more KNIME Edge clusters.

© 2023 KNIME AG. All rights reserved. 1

KNIME Edge Installation Guide

This is made possible by deploying a collection of workflows to KNIME Server for user
interaction and management. Additionally, several of the workflows act as API endpoints that
the KNIME Edge cluster(s) interact with.

State is maintained (in case of Server having multiple executors) by leveraging a PostgreSQL
database.

KNIME Edge Server Adapter

The KNIME Edge Server Adapter is responsible for all communication between KNIME Edge
and KNIME Server.

On startup, it will register the cluster to KNIME Server so that it may begin accepting work
(i.e. Inference Deployments). When a deployment is assigned to a KNIME Edge cluster, the
Server Adapter parses the instructions from KNIME Server and creates an
"InferenceDeployment” resource in the cluster.

KNIME Edge Operator

The KNIME Edge Operator is responsible for initializing the KNIME Edge stack as well as
reconciling / handling InferenceDeployments created by the Server Adapter. If a custom
resource (e.g., InferenceDeployment) is created, updated, or deleted, the Operator responds
by reconfiguring the low level resources to reconcile the cluster to an expected state.

KNIME Edge Inference Agent

The KNIME Edge Inference Agent provides a lightweight REST API on top of the KNIME
Analytics Platform to execute one specific workflow that is loaded on initialization.

The purpose is to allow the solution to be built into a Docker container so the Inference Agent
can scale as needed behind a network load balancer. Only one workflow can be specified, but
multiple instances of that workflow can be loaded into memory. This allows the Inference
Agent to handle multiple requests simultaneously.

Kong API Gateway

Kong is an open-source, third-party stack that provides KNIME Edge more flexibility and
functionality in how external API requests are handled and proxied to the relevant
deployments.

© 2023 KNIME AG. All rights reserved. 2

KNIME Edge Installation Guide

MinlO

MinlO is an embedded object store (which leverages the same API as the AWS S3 service).
KNIME Edge uses MinlO to cache workflows, logs and other artifacts to optimize the amount
of "fetching" required from KNIME Server.

Inference Deployment (Kubernetes Custom Resource)

Inference Deployment (InferenceDeployment) is a custom resource type that KNIME Edge
adds to the Kubernetes API (thus making it a native resource type). It contains the definition
for a KNIME Edge deployment, including:

+ The KNIME workflow to deploy
+ Resource allocation

+ Scaling configuration

Installation Planning

KNIME Server Large

i Supported version(s): KNIME Server Large 4.11.0+

KNIME Server Large is a prerequisite for licensing KNIME Edge; see the Configuring KNIME
Server for KNIME Edge Guide for details on configuring a KNIME Server as the control plane
for one or more KNIME Edge cluster(s).

If you're interested in KNIME Edge and want to understand more about the licensing, please
contact our Customer Care team.
Kubernetes

i Supported version(s): v1.19 to v1.23

A Kubernetes cluster must be available for KNIME Edge to function. See the Kubernetes
documentation for details on installation and usage.

© 2023 KNIME AG. All rights reserved.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.knime.com/2023-07/configuring_server_for_edge_guide/index.pdf
https://docs.knime.com/2023-07/configuring_server_for_edge_guide/index.pdf
https://www.knime.com/contact
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

KNIME Edge Installation Guide

Choosing a Kubernetes Namespace

Installing KNIME Edge into a namespace other than the default Kubernetes
i namespace is highly recommended, but optional. For more information see the
Kubernetes Namespace documentation.

Using a Kubernetes namespace is recommended as it encapsulates all KNIME Edge
resources within one scope and isolates them from any other resources running within the
Kubernetes cluster. Scoping the KNIME Edge installation to a namespace also makes any
potential manual maintenance operations safer since kubectl commands can be restricted
to a specific namespace via the optional [-n <namespace>] flag.

This guide will reference to this optional, but recommended, namespace where applicable
with [-n <namespace>].

If desired, create a namespace using the following command:

kubectl create namespace <namespace>

Helm CLI

0 Supported version(s): v3.0+

The Helm CLI is required for managing and utilizing the Helm charts for KNIME Edge. See the
Helm documentation for details on installation and usage.

Kubect! CLI

The Kubectl CLI is required for executing various commands for controlling the KNIME Edge
cluster. See the Kubectl CLI documentation for details on installation and usage.
Capacity planning & considerations

Memory per pod is the primary driver of infrastructure costs in a KNIME Edge
cluster.

A Warning: If insufficient memory is allocated to an Inference Agent pod, the pod
will likely crash and Kubernetes will report an OOMKilled event for that pod.

© 2023 KNIME AG. All rights reserved. 4

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/
https://kubernetes.io/docs/reference/kubectl/

KNIME Edge Installation Guide

When calculating needed capacity in Kubernetes for an KNIME Edge cluster, the largest
factor will be the expected number of Inference Deployment pods that will be running.

The base components of KNIME Edge (Server-Adapter, Edge-Operator, MinI0 object cache,
Prometheus, etc.) require minimal resources to run. Combined, the base resources typically
utilize a small portion of 1 CPU and around 1 GB of memory.

The KNIME Edge Inference Agent pod(s) that are deployed for each Inference Deployment
require additional resources.

For most inference workflows, it is recommended that each corresponding KNIME Edge
Inference Agent pod to be given an upper limit of 1 to 2 CPUs and an upper limit of 2 GB of
RAM.

Note that each pod, once fully started, will typically average around 1.5 to 2 GB in active
memory utilization. This memory utilization is mostly static and does not typically increase
or spike with request load.

CPU, by comparison, is heavily affected by request throughput. CPU usage will typically spike
while requests are being processed and settle down to a lower level of utilization while
waiting for new requests.

One useful method for gauging capacity requirements is to load test a single pod that utilizes
the intended inference workflow and measure the number of requests handled and latency
per request. By factoring in the expected number of concurrent Inference Deployments and
number of pods running in each deployment, it's possible to estimate overall capacity needs.

It is recommended to add a ~20% buffer on top of estimated capacity for scalability. If a
large-scale KNIME Edge cluster is being planned, the Considerations for large clusters page
from the Kubernetes documentation may be useful.

Working with the KNIME Artifact Registry

Logging in with a knime.com user

The Docker images required for an KNIME Edge cluster are available in the KNIME Artifact
Registry: hitps://registry.hub.knime.com

The knime-edge images and Helm charts can be found here.

Log into Harbor with a valid KNIME Community Hub user via the OIDC Login button.

© 2023 KNIME AG. All rights reserved. 5

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://registry.hub.knime.com
https://registry.hub.knime.com/harbor/projects/2/repositories

KNIME Edge Installation Guide

A valid KNIME Community Hub user (with elevated permissions) is required to
access the knime-edge project, Docker images, and deployment charts in
Harbor. Contact support@knime.com if help is needed accessing projects in
Harbor.

Helm repository configuration

In order to install a KNIME Edge cluster directly from the KNIME Artifact Registry, you need to
add the KNIME Edge chart repository.

Authentication with the KNIME Artifact Registry and KNIME Edge chart repository requires a
username and password. The username is the same as your Hub username. The password to
specify is a CLI secret provided by Harbor. See the Using OIDC from the Docker or Helm CLI
guide for information on how to retrieve the CLI secret (which acts as both the Helm and
Docker password).

Add the Helm chart repository

To add the Helm chart repository, run the following command (with kubect1 already available
and configured), and substitute the username and password.

helm repo add --username <username> --password <password> knime-edge \
https://registry.hub.knime.com/chartrepo/knime-edge

Add Docker credential secret to Kubernetes

In order to pull Docker images directly from the KNIME Artifact Registry, a secret with the
name regcred needs to be created in the KNIME Edge cluster. Creating the secret is
performed using the Kubectl CLI.

Make sure the secret is created in the same namespace where KNIME Edge is
intended to be deployed.

kubectl [-n <namespace>] create secret docker-registry regcred \
--docker-server=<your-registry-server> \
--docker-username=<your-name> \

--docker-password=<your-pword>

Verify by running:

© 2023 KNIME AG. All rights reserved. 6

mailto:support@knime.com
https://registry.hub.knime.com/
https://registry.hub.knime.com/
https://helm.sh/docs/topics/chart_repository/
https://goharbor.io/docs/1.10/administration/configure-authentication/oidc-auth/#using-oidc-from-the-docker-or-helm-cli
https://registry.hub.knime.com/

KNIME Edge Installation Guide

kubectl [-n <namespace>] get secret regcred

Installing a new KNIME Edge cluster

Applying a KNIME Edge License

For the KNIME Edge cluster to work, a license is required. Further information about the
licensing in KNIME Edge can be found in the KNIME Edge Licensing section of the KNIME
Edge User Guide.

Once a license has been obtained, a secret with the name knime-edge-1license that contains
the license file needs to be created in the Kubernetes cluster.

Make sure the secret is created in the same namespace where KNIME Edge is
intended to be deployed.

kubectl [-n <namespace>] create secret generic knime-edge-license --from
-file=license=<path-to-license-file>

KNIME Edge chart

The KNIME Edge Chart is a helm chart which defines the CRDs and dependencies needed by
a KNIME Edge Cluster.

The parameters required to configure a KNIME Edge Cluster are specified within a standard
Helm Values file, e.g. values.yaml, which is obtained from the knime-edge Helm repository.

The following steps outline the process of obtaining, understanding, customizing, and
installing this chart.

Fetching the Helm values file for the KNIME Edge chart

Refresh Available Charts

helm repo update

Determine Version:

© 2023 KNIME AG. All rights reserved.

https://docs.knime.com/2023-07/edge_user_guide/index.pdf#knime-edge-licensing

KNIME Edge Installation Guide

You can view all published versions of the KNIME Edge Helm charts in the Harbor registry.
See the README in each chart version for the values file definition specific to that version. An
overview of YAML techniques that can be used in the values.yaml file can be found in the
Helm documentation.

(Advanced) All Chart Versions can be listed with the following command:

helm search repo knime-edge/knime-edge-operator --versions --devel

Values file configuration
Generate the file values.yaml to configure parameters for the KNIME Edge cluster:

For the latest stable release, run:

helm show values knime-edge/knime-edge-operator > edge-values.yaml

(Advanced) For a specific version, run:

helm show values knime-edge/knime-edge-operator --version <chart_version> > edge-
values.yaml

Now open the edge-values.yaml in a text editor and follow the instructions in the file:
Comment strings in the edge-values.yaml file will specify what fields must be provided prior
to installation and what values can be overridden for advanced configurations.

Installing the KNIME Edge chart

Once you have an updated values file relevant to your KNIME Server installation and
environment, you can install KNIME Edge to your Kubernetes cluster with the following (add
the namespace override flag if necessary).

helm install [-n <namespace>] knime-edge knime-edge/knime-edge-operator -f edge-
values.yaml

(Advanced) If using a specific Chart version, install with:

helm install [-n <namespace>] knime-edge knime-edge/knime-edge-operator --version
<chart_version> -f edge-values.yaml

© 2023 KNIME AG. All rights reserved. 8

https://registry.hub.knime.com/harbor/projects/2/helm-charts/knime-edge-operator/versions
https://helm.sh/docs/chart_template_guide/yaml_techniques/

KNIME Edge Installation Guide

Confirming a KNIME Edge cluster is
operational

Verify Installation of KNIME Edge Cluster

Upon initial installation, the KNIME Edge Operator and KNIME Edge Server Adapter pods
should be up and running. The Kubectl CLI can be used to check the status (the pod ID will be
different in your cluster):

> kubectl [-n namespace] get pod <edge-name>-knime-edge-operator-6574d6fd79-stlss

NAME READY STATUS RESTARTS AGE
KNIME Edge Operator
<edge-name>-knime-edge-operator-6574d6fd79-stlss 1/1 Running 0 7m43s

> kubectl [-n namespace] get pod server-adapter-697768bc8c-g9zjw

NAME READY STATUS RESTARTS AGE
KNIME Edge Server Adapter
server-adapter-697768bc8c-g9zjw 1/1 Running 0 7m40s

If the KNIME Edge Server Adapter does not exist, there might be an issue in the KNIME Edge
Operator. To inspect the logs of the KNIME Edge Operator pod, run:

> kubectl [-n namespace] logs <edge-name>-knime-edge-operator-6574d6fd79-stlss

Additionally to checking that the pods are running, querying the endpoint should return an
empty list for inferenceDeployments:

% curl -sL http://localhost:8081/ | jq

—~

"inferenceDeployments": []

}
The KNIME Edge Operator creates additional pods in the KNIME Edge cluster which should

all be either in the Running or Completed state. For more information on these pods, see the
section below.

© 2023 KNIME AG. All rights reserved. 9

KNIME Edge Installation Guide

Interpreting the pods in the cluster

The Kubectl CLI can be used to investigate the pods in a KNIME Edge cluster. Below is
sample output from the kubectl [-n <namespace>] get pods command (where -n
<namespace> defines the namespace) with comments added to help identify the various pods

and their roles:

> kubectl [-n <namespace>] get pods

NAME

Registers Inference Deployments as Kubernetes Endpoints

endpoint-discovery-depl-6457b745b7-pkb24

Logging Service
fluentd-ds-6q816
fluentd-ds-562zj

KNIME Edge Operator
knime-edge-knime-edge-operator-6574d6fd79-stlss

Kong
knime-edge-kong-5bb658458f-znwsg

Workflow and Log Cache
minio-b9b9547dd-xbvs?

Inference Deployment
sentiment-predictor-7d56b6cd47-1p8gp

KNIME Edge Server Adapter
server-adapter-697768bc8c-g9zjw

Kong Gateway Loadbalancer
svclb-knime-edge-kong-proxy-bgqze
svclb-knime-edge-kong-proxy-jg8fg

Started by a cronjob to delete old logs
minio-log-cleaner-cronjob-1632700800-ssqsx

READY

1/1

11
1/1

1/1

2/2

11

1/1

1/1

2/2
2/2

0/1

Testing the KNIME Edge Server Adapter

STATUS RESTARTS

Running 0
Running 0
Running 0
Running 0
Running 0
Running 0
Running 0
Running 0
Running 0
Running 0

Completed @

AGE

7m40s

m41s
m41s

25m

25m

7m41s

6m31s

7m40s

25m
25m

19m

The Server Adapter is an essential piece in the KNIME Edge architecture as it communicates

with KNIME Server. If, e.g., Inference Deployments created in the control plane on KNIME
Server are not showing up in the KNIME Edge cluster, a not properly working Server Adapter

might be the issue.

© 2023 KNIME AG. All rights reserved.

10

KNIME Edge Installation Guide

First, test if the Server Adapter pod is running properly (the pod ID will be different in your
cluster):

> kubectl [-n namespace] get pod server-adapter-697768bc8c-g9zjw

It should return the status "Running".

NAME READY STATUS RESTARTS AGE
server-adapter-697768bc8c-q9zjw 1/1 Running 0 8m2s

To inspect the recent logs of the Server Adapter pod, run:

> kubectl [-n namespace] logs --since=30s server-adapter-697768bc8c-g9zjw

There are a few things to look for in the logs:

1. Aline that says "Registration accepted" tells you that the KNIME Edge license is valid
and set up correctly. Only if KNIME Server accepts the registration, the Server Adapter
is able to pull information about Inference Deployments from KNIME Server.

2. Aline that says "Unable to download file <knime-server>/workflow-paths.json" tells you
that either a wrong KNIME Server URL or root path is set in the Helm values file.

3. The Server Adapter makes requests to different workflows on KNIME Server. For each
request, it logs the HTTP response status. a) 200: the request was successful. b) 404:
the workflow was not found. This could be caused by a wrong workflow root path being
set in the Helm values file or by KNIME Edge workflows missing on KNIME Server.
Make sure the Helm values file is configured correctly and run the Init workflow on
KNIME Server again. c) 5xx: server error. Make sure KNIME Server is running properly.

4. Aline that says "Error from workflow execute call to KNIME Server" followed by the
body of the response means the workflow execution failed. This could be caused by
incompatible Server Adapter and workflow versions. Run the Init workflow on KNIME
Server again with the proper version set.

Advanced Operations and Troubleshooting

Error: Failed to pull image

Error Signature

© 2023 KNIME AG. All rights reserved. 11

KNIME Edge Installation Guide

Failed to pull image "registry.hub.knime.com/knime-edge/knime-edge-operator:0.0.1-beta-
20210802-161605-000061-4fa252d" : \

rpc error: code = Unknown desc = failed to pull and unpack image
"registry.hub.knime.com/knime-edge/knime-edge-operator:0.0.1-beta-20210802-161605-
000061-4fa252d" :\

failed to resolve reference "registry.hub.knime.com/knime-edge/knime-edge-
operator:0.0.1-beta-20210802-161605-000061-4fa252d" : \

unexpected status code [manifests 0.0.71-beta-20210802-161605-000061-4fa252d]: 401
Unauthorized

Interpretation:

* 401 Unauthorized

* image URI
registry.hub.knime.com/knime-edge/knime-edge-operator:0.0.1-beta-20210802-
161605-000061-4fa252d

> web URL

https://registry.hub.knime.com/harbor/projects/2/repositories = knime-edge —>

knime-edge-operator - search fortag 0.0.1-beta-20210802-161605-000061-
4fa252d

1. Log in to KNIME Artifact Registry
Log in to https://registry.hub.knime.com to refresh the validity of the access token.

2. Verify that the secrets are configured correctly
2a. Verify that the imagePullSecrets are configured

Look in deployment for imagePullSecrets; verify that regcred is present:

% kubectl [-n <namespace>] get deployments knime-edge-knime-edge-operator -o json | jq
'.spec.template.spec.imagePullSecrets'
[

{

"name": "regcred"
}
]

2b. Verify the secret exists in the correct namespace

% kubectl [-n <namespace>] get secret regcred
NAME TYPE DATA AGE
regcred kubernetes.io/dockerconfigjson 1 50m

© 2023 KNIME AG. All rights reserved.

12

https://registry.hub.knime.com/harbor/projects/2/repositories
https://registry.hub.knime.com

KNIME Edge Installation Guide

2c. Verify the value of the secret
A Warning: Executing the command below prints the secret value to stdout

Examine Secret values:

g
%
1

kubectl [-n <namespace>] get secret regcred -o json | jq -r
.data.".dockerconfigjson"' | base64 -d | jq
{
"auths": {
"registry.hub.knime.com": {
"username": "<harbor_user>",
"password": "<harbor_secret>",
"email": "<harbor_email>",
"auth": "<auth>"

(Advanced) Examine Secret values without printing to standard out:

% cd ~/.shh

% diff <(kubectl [-n <namespace>] get secret regcred -o json | jq -r
'.data.".dockerconfigjson"' | base64 -d | jq -r '.auths[].password') <(cat
./harbor_secret); echo $?

0

Error: Unable to Access Host
Possible Causes:
+ Misconfigured Ingress, i.e. Kong was not enabled or Traefik was left enabled

Error Signature: HTTP - Empty reply from server

% curl -L http://localhost:8081/
curl: (52) Empty reply from server

o For reference, a completely misconfigured cluster would return: curl: (7)
Failed to connect to localhost port 8081: Connection refused

1. Check the Kubernetes Cluster Networking settings

© 2023 KNIME AG. All rights reserved. 13

KNIME Edge Installation Guide

kubectl [-n <namespace>] get ingress
kubectl [-n <namespace>] get services
kubectl [-n <namespace>] get endpoints

2. Check the Kong Ingress Controller settings
Correct ingress configuration requires a helm install with kong.enabled: true.

Check for the following in the values.yaml used to deploy the cluster (or explore Kubernetes
configuration to determine whether the value was set):

kong.enabled:
true

Alternatively, check the manifest used by Helm at cluster install time:

helm status -o yaml [-n <namespace>] knime-edge | less

Resolution:

If necessary, set to true with:

helm upgrade [-n <namespace>] knime-edge knime-edge/knime-edge-operator --version
<chart_version> --reuse-values --set kong.enabled=true

Upgrading an existing KNIME Edge chart

To update to a new chart version, follow the instructions for obtaining an updated values file
and then run:

helm upgrade [-n <namespace>] knime-edge knime-edge/knime-edge-operator --version
<chart_version> -f edge-values.yaml

If any errors occur, refer to the advanced troubleshooting section in this guide.

Error: Helm Upgrade is invalid due to Required Value

Error Signature: INSTALLATION FAILED: EdgeDeployment.edge.knime.com "edge" is
invalid: - Required value

© 2023 KNIME AG. All rights reserved. 14

KNIME Edge Installation Guide

% helm upgrade [-n <namespace] edge knime-edge/knime-edge-operator --version
<chart_version> -f edge-values.yaml

Error: INSTALLATION FAILED: EdgeDeployment.edge.knime.com "edge" is invalid: \
[spec.knimeServerDeletelLogRequestWF: Required value, \
spec.knimeServerDeployWF: Required value, \

spec.knimeServerGetLogRequestsWF: Required value, \
spec.knimeServerPushMetricsWF: Required value, \

spec.knimeServerRegisterWF: Required value, \

spec.knimeServerUploadLogFileWF: Required value]

Interpretation: These are all keys which are required by the currently installed CRDs which are
used by the operator. The following questions explore potential root causes.

1. Are these values new in this version? Check the Chart

It is possible that a newer version may have updated values; check for this by following the
steps to obtain a new copy of the values.yaml file and searching it for the mentioned values.

2. Are these values not present in the Chart for this Version? Delete the CRDs

The following command will remove all KNIME Edge CRDs:

kubectl delete customresourcedefinition $(kubectl get customresourcedefinition
-o=jsonpath="{.items[?(@.spec.group=="edge.knime.com")].metadata.name}")

Explanation: Helm deliberately will not modify CRDs, so if the required values change
between versions, Helm cannot automatically manage the update.

© 2023 KNIME AG. All rights reserved. 15

https://helm.sh/docs/topics/charts/#limitations-on-crds

S Open for Innovation

KNIME AG

Talacker 50

8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license
from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Edge Installation Guide
	Table of Contents
	Introduction
	KNIME Edge Architecture
	Components of KNIME Edge
	KNIME Server (KNIME Edge Control Plane)
	KNIME Edge Server Adapter
	KNIME Edge Operator
	KNIME Edge Inference Agent
	Kong API Gateway
	MinIO
	Inference Deployment (Kubernetes Custom Resource)

	Installation Planning
	KNIME Server Large
	Kubernetes
	Helm CLI
	Kubectl CLI
	Capacity planning & considerations

	Working with the KNIME Artifact Registry
	Logging in with a knime.com user
	Helm repository configuration

	Installing a new KNIME Edge cluster
	Applying a KNIME Edge License
	KNIME Edge chart
	Fetching the Helm values file for the KNIME Edge chart
	Values file configuration
	Installing the KNIME Edge chart

	Confirming a KNIME Edge cluster is operational
	Verify Installation of KNIME Edge Cluster
	Interpreting the pods in the cluster
	Testing the KNIME Edge Server Adapter

	Advanced Operations and Troubleshooting
	Error: Failed to pull image
	Error: Unable to Access Host
	Upgrading an existing KNIME Edge chart
	Error: Helm Upgrade is invalid due to Required Value

