
KNIME Flow Control Guide
KNIME AG, Zurich, Switzerland

Version 5.3 (last updated on 2024-04-24)

Table of Contents

Introduction. 1

Flow variables . 2

Creating flow variables . 2

Using flow variables . 7

Loops. 11

Loop commands . 14

Using flow variables in loops . 15

Breakpoint node . 16

IF and CASE Switches . 18

IF Switch node . 18

Defining the active port via a flow variable . 19

CASE Switch Data (Start) node . 22

Error handling . 24

Introduction

Not all workflows have a static input and only one branch. Often, data are updated regularly,

and some settings can be different from time to time. In other cases a workflow might have

branches and a rule that determines which branch to follow.

In this guide, the tools available in KNIME Analytics Platform to control the flow in the needed

direction are introduced.

In particular this guide explains how to:

• Parametrize settings using flow variables

• Repeat a part of the workflow for different inputs

• Define a rule to activate a branch

• Provide an error handling branch if node execution fails

The nodes that come in hand here are shipped automatically with the KNIME Analytics

Platform and do not require the installation of any extension. You can find these nodes in the

node repositoy under the Workflow Control category as shown in Figure 1.

Figure 1. The Workflow Control nodes in the node repository

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 1

Flow variables

Flow variables are parameters with string, integer, double, arrays, or Path values. These

parameters can be used to avoid manually changing settings within the nodes of a workflow

when a new execution with different settings is required. Flow variables are available only for

the downstream nodes in the workflow.

Creating flow variables

To create flow variables you have the following possibilities:

• Convert a table row into flow variables

• Export a node configuration as flow variable

• Use Configuration and Widget nodes

• Combine or modify existing flow variables

The first two options are introduced in this section. The Widgets and Configuration nodes are

explained in more details in the Components Guide. However, an example that makes use of

this type of nodes in the context of creating a flow variable is available on KNIME Hub. An

example of the last option is the Rule Engine Variable node, which is introduced in the IF and

CASE Switches section.

Converting a table row into flow variables

The Table Row to Variable node, converts each column of the first row of a data table into a

flow variable. In the example in Figure 2, which is available on KNIME Hub, the Table Row to

Variable node is connected to Group By and Sorter node which respectively group the original

data by country, counting how many times an entry in the data corresponds to a specific

country and sorts the data accordingly, as shown in Figure 3.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 2

https://docs.knime.com/2024-06/analytics_platform_components_guide/index.pdf#configuration-nodes
https://docs.knime.com/2024-06/analytics_platform_components_guide/index.pdf#widget-nodes
https://docs.knime.com/2024-06/analytics_platform_components_guide/index.pdf
https://kni.me/w/p8N7xgOTTX5cKY98
https://kni.me/w/IAK7C-JnpzhSYoWx

Figure 2. Converting first row of a data table to flow variables

Figure 3. Data grouped and sorted according to sales by country

The output of the Table Row to Variable node is shown in Figure 4. The column names in the

data table are now the names of the flow variables, while the values of the first row are the

corresponding values of the flow variables.

Figure 4. First row converted to flow variables

 In the video From Data to Variables this is explained in more detail.

Exporting a node configuration as flow variable

Another option to create a new flow variable is to export a node configuration. In this case

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 3

https://youtu.be/wJaDFElADmk

the flow variable acquires the same value used for the node configuration. The name for the

flow variable is defined in the node configuration dialog.

Some configuration options have a flow variable icon next to them, for example the string

pattern in the Row Filter node configuration dialog shown in Figure 5.

Figure 5. Flow variable button in a Row Filter node dialog

To export a node configuration that has a flow variable icon next to it, open the node

configuration dialog and follow these steps:

1. Define the node configuration value in the corresponding field

2. Click the icon and select Create Variable in the dialog that opens, shown in Figure 6

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 4

3. Write the flow variable name in the field that activates.

Figure 6. Variable Settings dialog

If there is no flow variable icon next to the setting to be exported, follow these steps:

1. Define the node configuration value in the corresponding field

2. Open the Flow Variables tab in the node configuration dialog

3. Write the flow variable name in the text field close to the drop-down menu in the row

corresponding to the node configuration to export, as shown in Figure 7.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 5

Figure 7. Flow Variables tab in a node configuration dialog

Now, the Flow Variables tab in the output table view of the node, shows the exported flow

variable, as in Figure 8.

Figure 8. Flow Variables tab in a node output

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 6

Using flow variables

Flow variable ports

The flow variable ports are red circles above each node. Each node has flow variable ports,

but for most nodes they are hidden by default. You can make them visible by right clicking a

node and selecting Show Flow Variable Ports in the context menu as shown in Figure 9.

Figure 9. Showing flow variable ports

Overwriting node configurations with flow variables

In the previous section, we explained how to create flow variables. Here, we show how to use

a previously created flow variable to configure a node.

In case you want to use a flow variable you need to first connect the node where the flow

variable is created to the following one. If they are not connected already via any other port,

use the flow variable ports. You need to create the connection only once, then the transferred

flow variables are available for all subsequent nodes in the workflow.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 7

To use a flow variable follow these steps:

1. Open the configuration dialog of the node whose setting you want to overwrite via the

flow variable. The flow variable icon is not always present in the node configuration

dialog, but you can find it next to node configurations that are often overwritten by flow

variables.

a. If the chosen configuration setting has a flow variable icon next to it, click it and in

the Variable Settings dialog that opens select Use Variable. Then select the flow

variable from the drop-down menu, as shown in Figure 10.

Figure 10. Define a specific node configuration by a flow variable

b. If the flow variable icon is not present, go to the Flow Variables tab, navigate to

the chosen node configuration and select the flow variable from the drop-down

menu as shown in Figure 11.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 8

Figure 11. Overwriting node configurations in the flow variables tab

When you overwrite a node configuration with a flow variable, a warning message appears in

the lower part of the node configuration dialog pointing out which node configuration is

overwritten, as shown in Figure 12.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 9

Figure 12. Warning message in lower part of configuration dialog

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 10

Loops

Loops iterate over a certain part of the workflow. Each iteration, a repeated procedure, has

different input. What changes for each iteration can be a parameter value, dataset, subgroup

of the same dataset, single column, or single row as flow variables.

In the videos What is a Loop? and Counting Loop we explain the loop concept

and build a simple example loop.

A loop in KNIME begins with a Loop Start node and ends with a Loop End node. The

operations that are performed for each iteration are executed in the loop body. Generally, the

Loop Start node is responsible for increasing the iteration counter and for sending the data to

the loop body, which is then responsible for executing sub-workflow steps. After those are

performed the Loop End node checks if the end condition is fulfilled, and if this is not the

case the Loop Start node increases the counter and performs the loop body operations

again. When the end condition is fulfilled, the Loop End node collects the data from the

different iterations and the next step in the workflow is performed.

The loop in Figure 13, which is available on KNIME Hub, is an example where the Chunk Loop

Start node is used to iterate over a table, which contains ten rows filled with the letter A,

created with the Table Creator node.

Creates a

single column. In each row

only the letter 'A' entered.

Always takes three rows

of the input table

and processes them.

Collects the results

of each loop iteration.

Calculates

how many 'A's

are in the first column.

Table Creator Chunk Loop Start Loop EndValue Counter

Creates a

single column. In each row

only the letter 'A' entered.

Always takes three rows

of the input table

and processes them.

Collects the results

of each loop iteration.

Calculates

how many 'A's

are in the first column.

Table Creator Chunk Loop Start Loop EndValue Counter

Figure 13. An example of loop with Chunk Loop Start node

The Chunk Loop Start node takes three rows of the input table and sends a chunk of the data

to the loop body, which is made of a Value Counter node. Finally, a Loop End node collects

the results of each loop iteration and ends the loop when the condition of reaching the last

row of the input data is fulfilled.

KNIME Analytics Platform provides different loop start and loop end nodes for different types

of loops. The loop start and loop end nodes are collected into Table 1 and Table 2. You will

find these nodes in the node repository by navigating to Workflow Control → Loop Support.

Table 1. Loop start nodes

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 11

https://youtu.be/h1uDSRXts70
https://youtu.be/IjRshv5FD-k
https://kni.me/w/yzuCrGQLdRvfX1dB

Node Icon Loop Start Node Explanation

Counting Loop Start Triggers loop for a predefined

number of iterations

Chunk Loop Start Splits data into consecutive

chunks for each iteration. Either

the number of chunks or the

number of rows per chunk is

defined.

Column List Loop Start Iterates over a list of columns

Generic Loop Start Together with the Variable

Condition Loop End node it iterates

until a certain condition is met

Table Row To Variable Loop Start Converts every row in a table into

row variables and iterates over

them

Group Loop Start Iterates over groups of data that

are defined based on a condition

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 12

Node Icon Loop Start Node Explanation

Interval Loop Start Increases a variable value for each

iteration within a given interval

Recursive Loop Start Iterates over the output data table

from the Recursive Loop End node

Recursive Loop Start (2 Ports) Iterates over the two output data

tables from the Recursive Loop

End (2 ports) node

Table 2. Loop end nodes

Node Icon Loop End Node Explanation

Loop End Concatenates the output tables

from the different iterations

Variable Condition Loop End Together with the Generic Loop

Start node it executes a loop until a

certain condition is met

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 13

Node Icon Loop End Node Explanation

Loop End (2 ports) Concatenates the output tables

from each iteration into two

separate tables when each

iteration produces two output

tables

Loop End (Column Append) After each iteration the output

table is joined with the output table

from previous iteration

Recursive Loop End Passes the output table from an

iteration to a Recursive Loop Start

node until either the maximum

number of iterations, minimum

number of rows, or a certain

condition is met

Recursive Loop End (2 ports) Passes the output table from an

iteration to a Recursive Loop Start

(2 ports) node until the maximum

number of iterations, minimum

number of rows, or a certain

condition is met

Variable Loop End Collects flow variables from each

iteration. Can be used when the

calculations are finished inside the

loop and the output is not needed.

Loop commands

While executing a loop, you can follow the execution monitoring a selected node output using

the node monitor.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 14

https://docs.knime.com/2024-06/analytics_platform_user_guide/index.pdf#node-monitor

You have two ways of executing a loop.

• Complete execution: Right click the Loop End node and choose Execute from the

context menu. Now a yellow loop sign is shown at the Loop End node while the loop

steps are executed. As soon as it turns to green the loop is completely and successfully

executed. To reset the loop you can reset any of the nodes that belong to the loop sub-

workflow, by right clicking a node and choosing Reset from the context menu.

• Step-wise execution: Right click the Loop End node and choose Step Loop Execution

from the context menu, to execute one iteration of the loop. At any time you can

execute the remaining steps by choosing Resume Loop Execution from the context

menu of the Loop End node. You can also pause the step-wise execution or cancel it,

choosing Pause Execution or Cancel from the context menu of the Loop End node. In

both cases this affects only the Loop End node, while the antecedent nodes will still be

in the executed state.

The videos Loop End Nodes and Loop Commands explain loop end nodes in

more detail and show guided loop execution options.

Using flow variables in loops

In the Flow variables section we introduced flow variables and their function. They are often

used in loops and Table Row to Variable Loop Start and Variable Loop End nodes are two

specific loop nodes with input and output flow variable type ports.

An example for Table Row to Variable Loop Start is shown in Figure 14, and is also available

on KNIME Hub.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 15

https://youtu.be/eu2gIr7jr8U
https://youtu.be/lLTP3bbPZow
https://kni.me/w/g_W4wvGJ-PrikNkj

Creates a
single column with

some numbers.

Appends a cell to
the current table containing

the current value
of the 'Table Row To Variable

Loop Start'.

Random
2D Points

Collects the output data

Loops over each
row of the input

table and
exposes flow variables of

the entries.

Table Creator

Constant
Value Column

Visual 2D Data
Generator

Loop End

Table Row To
Variable Loop Start

Creates a
single column with

some numbers.

Appends a cell to
the current table containing

the current value
of the 'Table Row To Variable

Loop Start'.

Random
2D Points

Collects the output data

Loops over each
row of the input

table and
exposes flow variables of

the entries.

Table Creator

Constant
Value Column

Visual 2D Data
Generator

Loop End

Table Row To
Variable Loop Start

Figure 14. An example of loop with Table Row to Variable Loop Start node

Similarly to the Table Row to Variable node, the Table Row to Variable Loop Start node

transforms the row of a table to a set of variables that have as name the column name and

as value the corresponding value in the current row. It loops over each row of the input table

and exposes the flow variables obtained to the loop body. In the example in Figure 14, one of

the flow variables obtained is used to overwrite the column value parameter setting of the

Constant Value Column node, which appends a cell containing the current value to the

current table.

Breakpoint node

In the node repository, under Workflow Control → Loop Support, Breakpoint node is also

available. You can use it to halt execution when certain conditions are met. Figure 15 and

Figure 16 show the use of this node to impair the execution of the loop when the input flow

variable corresponding to the value of the customer segment is equal to three. You can also

configure the Breakpoint node to halt execution when it receives as input an empty table, and

active or inactive branch. You can also set a Custom message to be shown if the Breakpoint

node condition is met. This workflow is also available on KNIME Hub.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 16

https://kni.me/w/Iq7WJnMo3h2kvxyr

Creates a
single column. In each row

only the letter 'A' entered.

Never reached.Calculates
how many 'A's

are in the first column.

Fails in Iteration 15

Table Creator Loop End

paused

Value Counter BreakpointCounting Loop Start

Creates a
single column. In each row

only the letter 'A' entered.

Never reached.Calculates
how many 'A's

are in the first column.

Fails in Iteration 15

Table Creator Loop End

paused

Value Counter BreakpointCounting Loop Start

Figure 15. A workflow with a Breakpoint node

Figure 16. The Breakpoint node configuration dialog

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 17

IF and CASE Switches

In case you need to perform different operations on different groups of the data, you can use

a logic which is able to split the workflow into branches. The IF and CASE nodes available in

KNIME Analytics Platform have this function. The nodes for IF and CASE switches are

located in the node repository under Workflow Control → Switches.

Figure 17. Switch type nodes

IF Switch node

The IF Switch node creates two branches in the workflow which can be alternatively activated

or disactivated. This means, the nodes in the active branch or branches are executed and the

nodes in the inactive one are not. In the node configuration dialog you can define the active

branch either manually, or it can be dynamically controlled by a condition, through a flow

variable.

The example workflow in Figure 18, also available on KNIME Hub, loops over an IF Switch to

read in data row by row, to categorize the customers based on their call activity. When the

loop is finished, the rows are concatenated back into the same table.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 18

https://kni.me/w/HX6X19wFZ41e0Ri9

Creates a

single column. In each row

only the letter 'A' entered.

Depending on the

'String Input', the 'IF Switch'

either activates the

bottom, the top or both

branches of the workflow.

Bottom port selected

Replace input column with

constant value 'bottom'

Replace input column with

constant value 'bottom'

Collects output. Either

a column with 'bottom' or 'top'!

Table Creator

IF Switch

String Input

Constant

Value Column

Constant

Value Column

End IF

Creates a

single column. In each row

only the letter 'A' entered.

Depending on the

'String Input', the 'IF Switch'

either activates the

bottom, the top or both

branches of the workflow.

Bottom port selected

Replace input column with

constant value 'bottom'

Replace input column with

constant value 'bottom'

Collects output. Either

a column with 'bottom' or 'top'!

Table Creator

IF Switch

String Input

Constant

Value Column

Constant

Value Column

End IF

Figure 18. An example using an IF Switch node

In the workflow in Figure 18, the IF Switch node has both data and flow variable input. The

flow variable, created with the String Input node, defines the active branch. The data are then

handled in the active branch.

Defining the active port via a flow variable

As shown in Figure 19, the Select active port option is located in the Options tab of the IF

Switch node configuration dialog. Here, you can manually select either both, bottom or top, to

define the active branch. However, in the same way as in the Overwriting settings with flow

variables section, you can also use a flow variable to overwrite the active port option.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 19

Figure 19. Defining active branch by a flow variable

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 20

First, you need to create a suitable flow variable. Since you need to use it to overwrite the

Select active port option of the IF Switch node, you have to assign to it a string value equal to

either both, bottom or top.

In the example shown in Figure 18 this flow variable is created using a String Input node

which allows to manually set the output flow variable to one of the suitable string values.

Another possibility is to automatically activate a branch according to some set condition,

within a loop. In the example shown in Figure 20 and available on KNIME Hub, a loop is

performed row by row over some data. Each row is then transformed in flow variables and,

depending on the value of a specific column the IF Switch ports are activated.

Sets a condition
where some value

activates a port
'A' -> top

'B' ->bottom Replace input column with
constant value 'top'

Replace input column with
constant value 'bottom'

Collects output. Either
a column with 'bottom' or 'top'!Depending on the

'String Input' from
Rule Engine Variable node,

the 'IF Switch'
either activates the

bottom, the top or both
branches of the workflow.

Creates a
single column. In each row

letter 'A' or 'B' is
alternatively entered.

Transforms
the current row

into flow variables

Loop end
and concatenate

data
Starts a loop

where Chunk = 1 row
iterating through data row by row

Rule Engine
Variable

Constant
Value Column

Constant
Value Column

End IF

IF SwitchTable Creator

Table Row
to Variable

Loop End

Chunk Loop Start

Sets a condition
where some value

activates a port
'A' -> top

'B' ->bottom Replace input column with
constant value 'top'

Replace input column with
constant value 'bottom'

Collects output. Either
a column with 'bottom' or 'top'!Depending on the

'String Input' from
Rule Engine Variable node,

the 'IF Switch'
either activates the

bottom, the top or both
branches of the workflow.

Creates a
single column. In each row

letter 'A' or 'B' is
alternatively entered.

Transforms
the current row

into flow variables

Loop end
and concatenate

data
Starts a loop

where Chunk = 1 row
iterating through data row by row

Rule Engine
Variable

Constant
Value Column

Constant
Value Column

End IF

IF SwitchTable Creator

Table Row
to Variable

Loop End

Chunk Loop Start

Figure 20. IF Switch combined with loop

The Rule Engine Variable node configuration dialog is shown in Figure 21. Here the

antecedents are defined using the flow variables and functions available while the

consequent of a true condition is assigned with the => sign. The default outcome, i.e. the

value assigned to all cases for which none of the rules is true, is defined using the syntax

TRUE => "default outcome".

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 21

https://kni.me/w/QjxMKRo1Snx5l_20

Figure 21. Defining flow variable values by condition

CASE Switch Data (Start) node

With the CASE Switch Data (Start) node you can activate one of three branches in a workflow.

Similar to the IF Switch node, this can be either done manually or by using a condition.

Once the execution has finished, the tables resulting from the branches can be concatenated

by using an End IF node or CASE Switch Data (End) node.

An example, similar to the one of IF Switch Data node, is shown in Figure 22 and available on

KNIME Hub.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 22

https://kni.me/w/_cHGyAPEClgQNXC3

Creates a

single column. In each row

only the letter 'A' entered

Port 2 is activated.

Change default value

to 0, 1 or 2 for different

behaviour

Switch depending

on 'String Input'

Only keep first row

Only keep second row

Only keep third row

Collect results

Table Creator

String Input

CASE Switch

Data (Start)

Row Filter

Row Filter

Row Filter

CASE Switch

Data (End)

Creates a

single column. In each row

only the letter 'A' entered

Port 2 is activated.

Change default value

to 0, 1 or 2 for different

behaviour

Switch depending

on 'String Input'

Only keep first row

Only keep second row

Only keep third row

Collect results

Table Creator

String Input

CASE Switch

Data (Start)

Row Filter

Row Filter

Row Filter

CASE Switch

Data (End)

Figure 22. An example using a Case Switch node

Note that when using the CASE Switch, the possible values for the active output

port are 0 for the top, 1 for the middle, and 2 for the bottom output port. That

said, the functionality is similar, but the flow variable values are different.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 23

Error handling

Different type of errors, such as a failing connection to a remote service, the invocation of a

not accessible database, and so on, can occur when executing a workflow. To handle them

you can use the Try-Catch enclosures. The Try part executes some node(s). If the execution

fails, the Catch branch with error handling is activated. Otherwise the Default branch is

executed. At the end of the Try-Catch enclosure, the results from either the successful or

failed execution are collected. An example of a Try-Catch enclosure is shown in Figure 23,

which is available on KNIME Hub.

Creates a
single column. In each row

only the letter 'A' entered.

Collects the results
of each loop iteration, without

'A' for iteration 15.

Fails in Iteration 15Start Counting Start the try block
Catches errors

Creates empty input
if break-point triggers a fail

Node 11

Table Creator Loop EndBreakpointCounting Loop Start Try (Data Ports) Catch Errors
(Data Ports)

Empty Table Creator

Active Branch
Inverter

Creates a
single column. In each row

only the letter 'A' entered.

Collects the results
of each loop iteration, without

'A' for iteration 15.

Fails in Iteration 15Start Counting Start the try block
Catches errors

Creates empty input
if break-point triggers a fail

Node 11

Table Creator Loop EndBreakpointCounting Loop Start Try (Data Ports) Catch Errors
(Data Ports)

Empty Table Creator

Active Branch
Inverter

Figure 23. Error handling with a Try-Catch enclosure

In the workflow in Figure 23, the Try (Data Ports) node begins the enclosure, followed by the

Breakpoint node. The Breakpoint node is set to fail at the fifteenth iteration. Here, if execution

of the Try part fails the Catch branch is executed.

The Active Branch Inverter node begins the Catch branch for error handling. This node makes

an inactive branch active and active branch inactive:

• It activates a branch in the event that execution fails

• It deactivates a branch if execution is successful

The Catch Errors (Data Ports) node closes the Try-Catch enclosure:

• If execution is successful, the output of the node is the output from the Default branch.

Therefore, the Default branch must be connected to the top input port of the Catch

Errors (Data Ports) node.

• If execution fails, the output of the enclosure comes from the Catch branch, which must

be connected to the bottom input port of the Catch Errors (Data Ports) node. The

reasons for the failure are then reported in the flow variable output of the Catch Errors

(Data Ports) node.

Besides data tables, the Try part can also be started with a flow variable, using the Try

(Variable Ports) node instead.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 24

https://kni.me/w/yNkGIznDDl8YcVby

One of the following four alternatives is available to end the Try-Catch loop:

• Catch Errors (Data Ports) shown in Figure 23

• Catch Errors (Var Ports) if the outputs of the Catch and Default branches are flow

variables

• Catch Errors (Generic Ports) for models

• Catch Errors (DB Ports) for database queries.

You will find the nodes for a Try-Catch enclosure in the node repository by navigating to

Workflow Control → Error Handling.

KNIME Flow Control Guide

© 2024 KNIME AG. All rights reserved. 25

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Flow Control Guide
	Table of Contents
	Introduction
	Flow variables
	Creating flow variables
	Using flow variables

	Loops
	Loop commands
	Using flow variables in loops
	Breakpoint node

	IF and CASE Switches
	IF Switch node
	Defining the active port via a flow variable
	CASE Switch Data (Start) node

	Error handling

