
KNIME Database Extension Guide
KNIME AG, Zurich, Switzerland

Version 5.3 (last updated on 2024-08-07)

Table of Contents

Introduction. 1

Port Types . 1

Connecting to a database . 4

Connecting to predefined databases . 4

Connecting to other databases . 7

Register your own JDBC drivers . 9

Advanced Database Options . 14

Examples . 19

Reading from a database . 39

Database Metadata Browser . 40

Query Generation . 41

Visual Query Generation . 41

Advanced Query Building . 47

Database Structure Manipulation. 50

DB Table Remover. 50

DB Table Creator . 51

DB Manipulation . 55

DB Delete . 55

DB Writer . 58

DB Insert . 59

DB Update . 59

DB Merge . 59

DB Loader. 59

DB Transaction Nodes . 62

Type Mapping . 64

DB Type Mapper . 65

Migration . 66

Workflow Migration Tool . 66

Node Name Mapping . 70

Register your own JDBC drivers for the deprecated database framework 73

Business Hub / Server Setup . 74

JDBC drivers on KNIME Hub and KNIME Server . 74

Default JDBC Parameters . 76

Reserved JDBC Parameters. 78

Connection Initialization Statement . 79

Kerberos Constrained Delegation . 80

Example: Apache Hive™ . 81

Example: Apache Impala™ . 83

Example: Microsoft SQL Server . 84

Example: Oracle Database . 86

Example: PostgreSQL . 86

Introduction

The KNIME Database Extension provides a set of KNIME nodes that allow connecting to

JDBC-compliant databases. These nodes reside in the DB category in the Node Repository,

where you can find a number of database access, manipulation and writing nodes.

The database nodes are part of every KNIME Analytics Platform installation. It is not

necessary to install any additional KNIME Extensions.

This guide describes the KNIME Database extension, and shows, among other things, how to

connect to a database, and how to perform data manipulation inside the database.

Figure 1. Example workflow using DB nodes

Port Types

Figure 2. Two types of Database port

There are two types of ports in the Database extension, the DB Connection port (red) and the

DB Data port (dark red).

The DB Connection port stores information about the current DB Session, e.g data types,

connection properties, JDBC properties, driver information, etc.

The DB Data port gives you access to a preview of the data.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 1

Outport views

After executing a DB node, you can inspect the result in the outport view by right clicking the

node and selecting the outport to inspect at the bottom of the menu. For more information

on how to execute a node, please refer to the Quickstart Guide.

DB Connection outport view

The outport view of a DB Connection has the DB Session tab, which contains the information

about the current database session, such as database type, and connection URL.

DB Data outport view

When executing a database manipulation node that has a DB Data outport, for example a DB

GroupBy node, what the node does is to build the necessary SQL query to perform the

GroupBy operation selected by the user and forward it to the next node in the workflow. It

does not actually execute the query. However, it is possible to inspect a preview of a subset

of the intermediate result and its specification.

To do so, select the node and click Fetch 100 table rows in the node monitor at the bottom of

the UI.

By default only the first 100 rows are cached, but you can select also other

options by opening the dropdown menu of the Fetch button. Hoewever, be

aware that, depending on the complexity of the SQL query, already caching only

the first 100 rows might take a long time.

Figure 3. DB Outport View with retrieved rows

The table specification can be inspected by using the DB Data Spec Extractor node The

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 2

https://docs.knime.com/2024-06/analytics_platform_quickstart_guide/index.pdf#introduction
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.utility.specextractor.DBDataSpecExtractorNodeFactory/

output of this node will show the list of columns in the table, with their database types and

the corresponding KNIME data types.

For more information on the type mapping between database types and KNIME

types, please refer to the Type Mapping section.

The generated SQL query can be extracted by using the DB Query Extractor node.

Session Handling

The DB Session life cycle is managed by the Connector nodes. Executing a Connector node

will create a DB Session, and resetting the node or closing the workflow will destroy the

corresponding DB Session and with it the connection to the database.

To close a DB Session during workflow execution the DB Connection Closer node can be

used. This is also the preferred way to free up database resources as soon as they are no

longer needed by the workflow. To close a DB Session simply connect it to the DB

Connection Closer node which destroys the DB Session and with it the connection to the

database as soon as it is executed. Use the input flow variable port of the DB Connection

Closer node to executed it once it is save to destroy the DB Session.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 3

https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.utility.extractor.DBQueryExtractorNodeFactory/
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.disposal.connection.DBCloseConnectionNodeFactory/
https://docs.knime.com/latest/analytics_platform_flow_control_guide/index.html#use-flow-variables

Connecting to a database

The DB → Connection subcategory in the Node Repository contains

• a set of database-specific connector nodes for commonly used databases such as

Microsoft SQL Server, MySQL, PostgreSQL, H2, etc.

• as well as the generic Database Connector node.

A Connector node creates a connection to a database via its JDBC driver. In the configuration

dialog of a Connector node you need to provide information such as the database type, the

location of the database, and the authentication method if available.

The database-specific connector nodes already contain the necessary JDBC

drivers and provide a configuration dialog that is tailored to the specific

database. It is recommended to use these nodes over the generic DB Connector

node, if possible.

Connecting to predefined databases

The following are some databases that have their own dedicated Connector node:

• Amazon Redshift

• Amazon Athena

• Google BigQuery

• H2

• Microsoft Access

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• SQLite

• Vertica

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 4

Some dedicated Connector nodes, such as Google BigQuery or Amazon

Redshift, come without a JDBC driver due to licensing restriction. If you want to

use these nodes, you need to register the corresponding JDBC driver first.

Please refer to the Register your own JDBC drivers section on how to register

your own driver. For Amazon Redshift, please refer to the Third-party Database

Driver Plug-in section.

If no dedicated connector node exists for your database, you can use the generic DB

Connector node. For more information on this please refer to the Connecting to other

databases section.

After you find the right Connector node for your database, double-click on the node to open

the configuration dialog. In the Connection Settings window you can provide the basic

parameters for your database, such as the database type, dialect, location, or authentication.

Then click Ok and execute the node to establish a connection.

KNIME Analytics Platform in general provides three different types of connector nodes the

File-based Connector node , the Server-based Connector node and the generic Connector

nodes which are explained in the following sections.

File-based Connector node

Figure 4. H2 Connector configuration dialog

The figure on the left side shows an

example of the node dialog for a file-based

database, such as SQLite, H2, or MS

Access. The most important node settings

are described below:

Configuration: In the configuration window

you can choose the registered database

dialect and driver.

Location: The location to the database. You

can provide either the path to an existing

database, or choose in-memory to create a

temporary database that is kept in memory

if the database supports this feature.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 5

Server-based Connector node

Figure 5. MS SQL Server Connector

configuration dialog

The figure on the left side shows an

example of the node dialog for a server-

based database, such as MySQL, Oracle, or

PostgreSQL. The most important node

settings are described below.

Configuration: In the configuration window

you can choose the registered database

dialect and driver.

Location: The location to the database. You

should provide the hostname and the port

of the machine that hosts the database, and

also the name of the database which might

be optional depending on the database.

Authentication: Login credentials can either

be provided via credential flow variables, or

directly in the configuration dialog in the

form of username and password. Kerberos

authentication is also provided for

databases that support this feature, e.g Hive

or Impala. For more information on

Kerberos authentication, please refer to the

Kerberos User Guide.

For more information on the JDBC Parameters and Advanced tab, please refer

to the JDBC Parameters and Advanced Tab section. The Type Mapping tabs

are explained in the Type Mapping section.

Third-party Database Driver Plug-in

As previously mentioned, the dedicated database-specific connector nodes already contain

the necessary JDBC drivers. However, some databases require special licensing that

prevents us from automatically installing or even bundling the necessary JDBC drivers with

the corresponding connector nodes. For example, KNIME provides additional plug-ins to

install the Oracle Database driver, official Microsoft SQL Server driver or the Amazon Redshift

driver which require special licenses.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 6

https://docs.knime.com/2024-06/analytics_platform_kerberos_user_guide/index.pdf#introduction
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server?view=sql-server-2017
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html

To install the plug-ins, go to File → Install KNIME Extensions…. In the Install window, search

for the driver that you need (Oracle, MS SQL Server or Redshift), and you will see something

similar to the figure below. Then select the plug-in to install it. If you don’t see the plug-in in

this window then it is already installed. After installing the plug-in, restart KNIME. After that,

when you open the configuration dialog of the dedicated Connector node, you should see

that the installed driver of the respective database is available in the driver name list.

Figure 6. Install Window

Connecting to other databases

The generic DB Connector node can connect to arbitrary JDBC compliant databases. The

most important node settings are described below.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 7

Figure 7. Database Connector configuration dialog

Database Type: Select the type of the database the node will connect to. For example, if the

database is a PostgreSQL derivative select Postgres as database type. if you don’t know the

type select the default type.

Database Dialect: Select the database dialect which defines how the SQL statements are

generated.

Driver Name: Select an appropriate driver for your specific database. If there is no matching

JDBC driver it first needs to be registered, see Register your own JDBC drivers. Only drivers

that have been registered for the selected database type will be available for selection.

Database URL: A driver-specific JDBC URL. Enter the database information in the placeholder,

such as the host, port, and database name.

Authentication: Login credentials can either be provided via credential flow variables, or

directly in the configuration dialog in the form of username and password. Kerberos

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 8

authentication is also provided for databases that support this feature, e.g Hive or Impala.

For more information on Kerberos authentication, please refer to the Kerberos User Guide.

The selected database type and dialect determine which data types, statements

such as insert, update, and aggregation functions are supported.

If you encounter an error while connecting to a third-party database, you can enable the JDBC

logger option in the Advanced Tab. If this option is enabled all JDBC operations are written

into the KNIME log which might help you to identify the problems. In order to tweak how

KNIME interacts with your database e.g. quotes identifiers you can change the default

settings under the Advanced Tab according to the settings of your database. For example,

KNIME uses " as the default identifier quoting, which is not supported by default by some

databases (e.g Informix). To solve this, simply change or remove the value of the identifier

delimiter setting in the Advanced Tab.

Register your own JDBC drivers

For some databases KNIME Analytics Platform does not contain a ready-to-use JDBC driver.

In these cases, it is necessary to first register a vendor-specific JDBC driver in KNIME

Analytics Platform. Please consult your database vendor to obtain the JDBC driver. A list of

some of the most popular JDBC drivers can be found below.

 The JDBC driver has to be JDBC 4.1 or above compliant.

To set up JDBC drivers on KNIME Server, please refer to the section JDBC drivers on KNIME

Hub and KNIME Server.

To register your vendor-specific JDBC driver, go to File → Preferences → KNIME →
Databases.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 9

https://docs.knime.com/2024-06/analytics_platform_kerberos_user_guide/index.pdf#introduction
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_41.html

Figure 8. DB Preference page

Clicking Add will open a new database driver window where you can provide the JDBC driver

path and all necessary information, such as:

• ID: The unique ID of the JDBC driver consisting only of alphanumeric characters and

underscore.

• Name: The unique name of the JDBC driver.

• Database type: The database type. If you select a specific database type e.g. MySQL the

driver will be available for selection in the dedicated connector node e.g. MySQL

Connector. However if your database is not on the list, you can choose default, which

will provide you with all available parameters in the Advanced Tab. Drivers that are

registered for the default type are only available in the generic DB Connector node.

• Description: Optional description of the JDBC driver.

• URL template: The JDBC driver connection URL format which is used in the dedicated

connector nodes. If you select a database other than default in the Database type, the

URL template will be preset with the default template for the selected database. Please

refer to the URL Template syntax information below or the JDBC URL Template section

for more information.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 10

• URL Template syntax information: Clicking on the question mark will open an infobox

which provides information about the URL template syntax in general. Additionally, if

you select a database other than default in the Database type, one or more possible URL

template examples will be provided for the selected database type, which you can copy

and paste in the URL template field.

• Classpath: The path to the JDBC driver. Click Add file if the driver is provided as a single

.jar file, or Add directory if the driver is provided as a folder that contains several .jar

files. Some vendors offer a .zip file for download, which needs to be unpacked to a

folder first.

If the JDBC driver requires native libraries e.g DLLs you need to put all of them

into a single folder and then register this folder via the Add directory button in

addition to the JDBC driver .jar file.

• Driver class: The JDBC driver class and version will be detected automatically by

clicking Find driver classes. Please select the appropriate class after clicking the

button.

If your database is available in the Database type drop down list, it is better to

select it instead of setting it to default. Setting the Database type to default will

allow you to only use the generic DB Connector node to connect to the

database, even if there is a dedicated Connector node for that database.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 11

Figure 9. Register new database driver window

KNIME Server can distribute JDBC drivers automatically to all connected KNIME

Analytics Platform clients (see JDBC drivers on KNIME Hub and KNIME Server).

JDBC URL Template

When registering a JDBC driver, you need to specify its JDBC URL template, which will be

used by the dedicated Connector node to create the final database URL. For example,

jdbc:oracle:thin:@<host>:<port>/<database> is a valid driver URL template for the Oracle

thin driver. For most databases you don’t have to find the suitable URL template by yourself,

because the URL Template syntax information provides at least one URL template example

for a database.

The values of the variables in the URL template, e.g <host>, <port>, or <database> can be

specified in the configuration dialog of the corresponding Connector node.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 12

https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

Tokens:

• Mandatory value (e.g. <database>): The referenced token must have a non-blank value.

The name between the brackets must be a valid token name (see below for a list of

supported tokens).

• Optional value (e.g. [database]): The referenced token may have a blank value. The

name between the brackets must be a valid token name (see below for a list of

supported tokens).

• Conditions (e.g. [location=in-memory?mem:<database>]): This is applicable for file-

based databases, such as H2, or SQLite. The first ? character separates the condition

from the content that will only be included in the URL if the condition is true. The only

explicit operator available currently is =, to test the exact value of a variable. The left

operand must be a valid variable name, and the right operand the value the variable is

required to have for the content to be included. The content may include mandatory

and/or optional tokens (<database>/[database]), but no conditional parts. It is also

possible to test if a variable is present. In order to do so, specifying the variable name

e.g. database as the condition. E.g.

jdbc:mydb://<host>:<port>[database?/databaseName=<database>] will result in

jdbc:mydb://localhost:10000/databaseName=db1 if the database name is specified in

the node dialog otherwise it would be jdbc:mydb://localhost:10000.

For server-based databases, the following tokens are expected:

• host: The value of the Hostname field on the Connection Settings tab of a Connector

node.

• port: The value of the Port field on the Connection Settings tab of a Connector node.

• database: The value of the Database name field on the Connection Settings tab of a

Connector node.

For file-based databases, the following tokens are expected:

• location: The Location choice on the Connection Settings tab of a Connector node. The

file value corresponds to the radio button next to Path being selected, and in-memory to

the radio button next to In-memory. This variable can only be used in conditions.

• file: The value of the Path field on the Connection Settings tab of a Connector node. This

variable is only valid if the value of the location is file.

• database: The value of the In-memory field on the Connection Settings tab of a

Connector node. This variable is only valid if the value of the location is in-memory.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 13

Field validation in the configuration dialog of a Connector node depends on

whether the (included) tokens referencing them are mandatory or optional (see

above).

List of common JDBC drivers

Below is a selected list of common database drivers you can add among others to KNIME

Analytics Platform:

• Apache Derby

• Exasol

• Google BigQuery

• IBM DB2 / Informix

• SAP HANA

The list above only shows some example of database drivers that you can add.

If your driver is not in the list above, it is still possible to add it to KNIME

Analytics Platform.

Advanced Database Options

JDBC Parameters

The JDBC parameters allow you to define custom JDBC driver connection parameter. The

value of a parameter can be a constant, variable, credential user, credential password, KNIME

URL or path flow variable. In case of a path flow variable only standard file systems are

supported but no connected file systems. For more information about the supported

connection parameter please refer to your database vendor.

The figure below shows an example of SSL JDBC parameters with different variable types.

You can set a boolean value to enable or disable SSL, you can also use a KNIME relative URL

to point to the SSLTrustStore location, or use a credential input for the trustStorePassword

parameter.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 14

http://db.apache.org/derby/derby_downloads.html
https://www.exasol.com/en/download/
https://cloud.google.com/bigquery/providers/simba-drivers/
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
https://support.sap.com/en/my-support/software-downloads.html
https://docs.knime.com/latest/analytics_platform_file_handling_guide/index.html#path-flow-variable
https://docs.knime.com/latest/analytics_platform_file_handling_guide/index.html#standard-fs
https://docs.knime.com/latest/analytics_platform_file_handling_guide/index.html#connected-fs

Figure 10. JDBC Parameters Tab

Please be aware that when connecting to PostgreSQL with SSL the key file has

to first be converted to either pkcs12 or pkcs8 format. For more information

about the supported driver properties see the PostgreSQL documentation.

Advanced Tab

The settings in the Advanced tab allow you to define KNIME framework properties such as

connection handling, advanced SQL dialect settings or query logging options. This is the

place where you can tweak how KNIME interacts with the database e.g. how the queries

should be created that are send to the database. In the Metadata section you can also

disable the metadata fetching during configuration of a node or alter the timeout when doing

so which might be necessary if you are connected to a database that needs more time to

compute the metadata of a created query or you are connected to it via a slow network.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 15

https://jdbc.postgresql.org/documentation/head/connect.html

Figure 11. Advanced Tab

The full available options are described as follow:

Connection

• Automatically close idle connection timeout: Time interval in seconds that a database

connection can remain idle before it gets closed automatically. A value of 0 disables

the automatic closing of idle connections.

• Automatically reconnect to database: Enables or disables the reconnection to the

database if the connection is invalid. Connection depending object will no longer exist

after reconnection.

• Reconnect to database timeout: Time interval in seconds to wait before canceling the

reconnection to the database. A value of 0 indicates the standard connection timeout.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 16

• Restore database connection: Enables or disables the restoration of the database

connection when an executed connector node is loaded.

• Validation query: The query to be executed for validating that a connection is ready for

use. If no query is specified KNIME calls the Connection.isValid() method to validate

the connection. Only errors are checked, no result is required.

Dialect capabilities

• CASE expressions: Whether CASE expressions are allowed in generated statements.

• CREATE TABLE CONSTRAINT name: Whether names can be defined for CONSTRAINT

definitions in CREATE TABLE statements.

• DROP TABLE statement: Whether DROP TABLE statements are part of the language.

• Derived table reference: Whether table references can be derived tables.

• Insert into table from query: Whether insertion into a table via a select statement is

supported, e.g. INSERT INTO T1 (C1) (SELECT C1 FROM T2).

Dialect syntax

• CREATE "temporary" TABLE syntax: The keyword or keywords for creating temporary

tables.

• CREATE TABLE "if not exists" syntax: The syntax for the table creation statement

condition "if not exists". If empty, no such statement will automatically be created,

though the same behavior may still be non-atomically achieved by nodes.

• Delimit only identifier with spaces: If selected, only identifiers, e.g. columns or table

names, with spaces are delimited.

• Identifier delimiter (closing): Closing delimiter for identifier such as column and table

name.

• Identifier delimiter (opening): Opening delimiter for identifier such as column and table

name.

• Identifier non-word character replacement: The replacement for non-word characters in

identifiers when their replacement is enabled. An empty value results in the removal of

non-word characters.

• Replace non-word characters in identifiers: Whether to replace non-word characters in

identifiers, e.g. table or column names. Non-word characters include all characters

other than alphanumeric characters (a-z, A-Z, 0-9) and underscore (_).

• Table reference keyword: The keyword before correlation names in table references.

JDBC logger

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 17

https://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html#isValid(int)

• Enable: Enables or disables logger for JDBC operations.

JDBC parameter

• Append JDBC parameter to URL: Enables or disables appending of parameter to the

JDBC URL instead of passing them as properties.

• Append user name and password to URL: Enables or disables appending of the user

name and password to the JDBC URL instead of passing them as properties.

• JDBC URL initial parameter separator: The character that indicates the start of the

parameters in the JDBC URL.

• JDBC URL parameter separator: The character that separates two JDBC parameter in

the JDBC URL.

JDBC statement cancellation

• Enable: Enables or disables JDBC statement cancellation attempts when node

execution is canceled.

• Node cancellation polling interval: The amount of milliseconds to wait between two

checking of whether the node execution has been canceled. Valid range: [100, 5000].

Metadata

• Flatten sub-queries where possible: Enables or disables sub-query flattening. If enabled

sub-queries e.g. SELECT * FROM (SELECT * FROM table) WHERE COL1 > 1 will become

SELECT * FROM table WHERE COL1 > 1. By default this option is disabled since query

flattening is usually the job of the database query optimizer. However some database

either have performance problems when executing sub-queries or do not support sub-

queries at all. In this case enabling the option might help. However not all queries are

flatten so even enabled sub-queries might be send to the database.

• List of table types to show in metadata browser: Comma separated list of table types to

show in metadata browser. Some databases e.g. SAP HANA support more than the

standard TABLE and VIEW type such as CALC VIEW, HIERARCHY VIEW and JOIN VIEW.

• Retrieve in configure: Enables or disables retrieving metadata in configure method for

database nodes.

• Retrieve in configure timeout: Time interval in seconds to wait before canceling a

metadata retrieval in configure method. Valid range: [1,).

Transaction

• Enabled: Enables or disables JDBC transaction operations.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 18

Misc

• Fail if WHERE clause contains any missing value: Check every value of a WHERE clause

(e.g., update, delete or merge) and fail if one is missing.

• Fetch size: Hint for the JDBC driver about the number of rows that should be fetched

from the database when more rows are needed. Valid range: [0,).

• Support multiple databases: Enables or disables support for multiple databases in a

single statement.

Dedicated DB connectors (e.g. Microsoft SQL Server Connector) and built-in drivers usually

show only a subset of the above mentioned options since most options are predefined, such

as whether the database supports CASE statements, etc.

Examples

In this section we will provide examples on how to connect to some widely-known databases.

Connecting to Oracle

The first step is to install the Oracle Database JDBC driver which is provided as a separate

plug-in due to license restrictions. Please refer to Third-party Database Driver Plug-in for

more information about the plug-in and how to install it.

It is also possible to use your own Oracle Database driver if required. For more

details refer to the Register your own JDBC drivers section.

Once the driver is installed you can use the dedicated Oracle Connector node. Please refer to

Connecting to predefined databases on how to connect using dedicated Connector nodes.

Kerberos authentication

To use this mode, you need to select Kerberos as authentication method in the Connection

Settings tab of the Oracle Connector. For more information on Kerberos authentication,

please refer to the Kerberos User Guide. In addition, you need to specify the following entry in

the JDBC Parameters tab: oracle.net.authentication_services with value (KERBEROS5). Please

do not forget to put the value in brackets. For more details see the Oracle documentation.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 19

https://kni.me/n/_fvEBQvrof1kSz-X
https://docs.knime.com/2024-06/analytics_platform_kerberos_user_guide/index.pdf#introduction
https://docs.oracle.com/en/database/oracle/oracle-database/21/jjdbc/client-side-security.html#GUID-97E88D18-B590-4313-87B8-EE422DA644B3

Figure 12. JDBC Parameters tab with Kerberos settings

Connecting to Databricks

To connect to Databricks, you need to install the KNIME Databricks Integration.

The next step is to download the Databricks Simba JDBC driver from the official website to

your machine. Then go to File → Preferences → KNIME → Databases, and click Add.

KNIME provides Apache Hive JDBC driver for Databricks which you can use as

a fallback driver. But it is strongly recommended to use the official JDBC driver

provided in the link above.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 20

https://hub.knime.com/knime/extensions/org.knime.features.bigdata.databricks/latest
https://databricks.com/spark/jdbc-driver-download

Figure 13. Register new Databricks driver

In the new database driver window, provide the following information:

• ID: Databricks, but you can enter your own driver ID as long as it only contains

alphanumeric characters and underscores.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 21

• Name: Databricks, but you can enter your own driver name.

• Database type: Databricks is available in the drop down list, so the database type is set

to databricks.

• Description: My Databricks driver, for example.

• URL template: By selecting databricks in the Database type, the URL template is

automatically preset to the default JDBC URL template for Databricks, i.e

jdbc:spark://<host>:<port>/default. For more possible templates, simply click on

the URL Template syntax information directly below. Please refer to the JDBC URL

Template section for more information on the supported tokens e.g. host, port and

database.

• Classpath: Click Add file to add the Databricks JDBC driver file. The path to the driver

file will then appear in the Classpath area.

• Driver class: clicking Find driver classes will automatically detect all available JDBC

driver classes and versions, which in this case is com.simba.spark.jdbc4.Driver in

version 2.6.0.

After filling all the information, click Ok, and the newly added driver will appear in the

database driver preferences table. Click Apply and Close to apply the changes.

Figure 14. Database Preference page

To connect to Databricks, you need to first create a Databricks environment that is connected

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 22

to an existing Databricks cluster. To do this, use the Create Databricks Environment node. In

the configuration window, you need to provide:

• Databricks URL: Full URL of the Databricks deployment, which is either

https://<account>.cloud.databricks.com on AWS or https://<region>.azuredatabricks.net

on Azure.

• Cluster ID: Unique identifier of a cluster in the Databricks workspace.

• Workspace ID: Workspace ID for Databricks on Azure, leave blank on AWS.

In the DB Port → Driver tab, you can select the driver name, which in this case is the

Databricks Simba JDBC driver we have registered previously.

For the authentication, Databricks strongly recommends using tokens. Please refer to the

authentication in Databricks AWS or Azure documentation for more information about

personal access token.

Connecting to Google BigQuery

To connect to BigQuery, you need to install the KNIME BigQuery Extension.

Due to license restrictions the BigQuery JDBC driver is not part of KNIME Analytics Platform

and needs to be downloaded and registered separately. To download the BigQuery JDBC

driver please visit the official website. Then go to File → Preferences → KNIME → Databases,

and click Add.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 23

https://<account>.cloud.databricks.com
https://<region>.azuredatabricks.net
https://docs.databricks.com/api/latest/authentication.html
https://docs.azuredatabricks.net/api/latest/authentication.html
https://hub.knime.com/knime/extensions/org.knime.features.database.extensions.bigquery/latest
https://cloud.google.com/bigquery/providers/simba-drivers/

Figure 15. Register new BigQuery driver

In the new database driver window, provide the following information:

• ID: BigQuery, but you can enter your own driver ID as long as it only contains

alphanumeric characters and underscores.

• Name: BigQuery, but you can enter your own driver name.

• Database type: BigQuery is available in the drop down list, so the database type is set to

bigquery.

• Description: My Google BigQuery driver, for example.

• URL template: By selecting bigquery in the Database type, the URL template is

automatically preset to the default JDBC URL template for BigQuery, i.e

jdbc:bigquery://<host>:<port>;ProjectId=<database>. Please refer to the URL

Template syntax information directly below or the JDBC URL Template section for more

information on the supported tokens e.g. host, port and database.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 24

• Classpath: Click Add directory to add the BigQuery JDBC driver directory that contains

the GoogleBigQueryJDBC42.jar file and all required companion libraries. The path to the

driver directory will then appear in the Classpath area.

• Driver class: clicking Find driver classes will automatically detect all available JDBC

driver classes and versions, which in this case is

com.simba.googlebigquery.jdbc42.Driver in version 1.2.0.

Make sure to include the directory with the GoogleBigQueryJDBC42.jar file and

all required companion libraries.

After filling all the information, click Ok, and the newly added driver will appear in the

database driver preferences table. Click Apply and Close to apply the changes.

Figure 16. Database Preference page

To connect to the BigQuery server, we suggest to use the Google Authentication (API Key)

node to authenticate and create a connection to the Google APIs, and then the Google

BigQuery Connector node to connect to BigQuery. As an alternative you can also specify the

driver specific authentication information via the JDBC Parameters tab.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 25

Figure 17. Connecting to BigQuery

In the configuration window of the Google Authentication (API Key) node, you need to provide:

• Service account email: Email address of the service account. Please see the BigQuery

documentation for more information on how to create a service account.

• P12 key file location: Path to the private P12 key file. While creating a service account

email, you can create a service account key in the form of either JSON or P12

key/credentials. Note that only P12 keys are supported here.

• Scopes: The scopes that will be granted for this connection. Please see the Google

documentation on the list of available BigQuery API scopes. For example, selecting

Google BigQuery Connection allows you to view and manage your data in Google

BigQuery.

 Only P12 keys are supported in the Google Authentication (API Key) node!

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 26

https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-console
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://developers.google.com/identity/protocols/googlescopes#bigqueryv2

Figure 18. Configuration Window of Google Authentication (API Key) Node

After the connection is successfully established, it can be used as the input Google Service

Connection for the Google BigQuery Connector node. The configuration window contains as

follows:

• Driver Name: The name of the BigQuery driver we have given earlier when we registered

the driver. In our example it is BigQuery.

• Hostname: The hostname (or IP address) of a Google BigQuery server.

• Port: The port on which the Google BigQuery server is listening. The default port is 443.

• Database Name: The name (project ID) of the database you want to connect to.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 27

Figure 19. Configuration Window of Google BigQuery Connector Node

Connecting to Microsoft SQL Server

The dedicated Microsoft SQL Server Connector node is bundled by default with the jTDS for

Microsoft SQL Server driver. If you want to use the official driver for Microsoft SQL Server

instead, KNIME provides an additional plug-in to install the driver. Please refer to Third-party

Database Driver Plug-in for more information about the plug-in and how to install it.

It is also possible to use your own Microsoft SQL Server driver. To register your own driver

please refer to the Register your own JDBC drivers section. However, the Microsoft SQL

Server driver might require several native libraries, such as DLLs. In that case you need to

copy all the required native libraries into a single folder and then register this folder via the

Add directory button in addition to the JDBC .jar file in the database driver window. This

step is not required if you use the provided jTDS for Microsoft SQL Server driver or the official

driver for Microsoft SQL Server installed through the plug-in.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 28

http://jtds.sourceforge.net/
http://jtds.sourceforge.net/
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server?view=sql-server-2017

All necessary files such as the sqljdbc_auth.dll or the ntlmauth.dll are part of

the provided drivers.

After installing the JDBC driver, you can use the Microsoft SQL Server Connector node to start

connecting to Microsoft SQL Server. Please refer to Connecting to predefined databases for

more information on how to connect using dedicated Connector nodes.

Microsoft SQL Server supports the so-called Windows native authentication mode. If you

want to use this mode, simply select None/native authentication in the Authentication setting

in the configuration window. The following sections explain how to use this mode depending

on which driver you use.

Windows native authentication only works on Windows. If you are running

workflows on KNIME Hub or KNIME Server the KNIME Executor will most likely

run on Linux which requires user login as well as additional JDBC parameters.

For details see the following section.

Windows native authentication (NTLM) using the official driver for Microsoft SQL Server

To use this mode with the provided official driver for Microsoft SQL Server, KNIME Analytics

Platform needs to run on a Windows machine and you need to be logged in a Windows

domain that is accepted by the Microsoft SQL Server you are connecting to. In addition, you

need to specify the following entry in the JDBC Parameters tab:

integratedSecurity=true

For more details see the Microsoft documentation.

If KNIME Analytics Platform runs on a non-Windows machine, you need to provide the user

name and password of the Windows domain user you want to use for authentication. To do

so please select either the Credentials option or the Username & password option.

In addition, you need to specify the following entries in the JDBC Parameters tab:

authenticationScheme=NTLM
domain=<<Windows domain name>>

For more details about the required parameters see the Microsoft JDBC driver

documentation.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 29

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/authentication-in-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/using-kerberos-integrated-authentication-to-connect-to-sql-server
https://learn.microsoft.com/en-us/sql/connect/jdbc/setting-the-connection-properties?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/connect/jdbc/setting-the-connection-properties?view=sql-server-ver16

Windows native authentication (NTLM) using the jTDS driver for Microsoft SQL Server

If you are using the provided jTDS for Microsoft SQL Server driver and KNIME Analytics

Platform runs on a Windows machine that is logged into a Windows domain that is accepted

by the Microsoft SQL Server you are connecting to, then you don’t need to specify any JDBC

parameters.

If KNIME Analytics Platform runs on a non-Windows machine, you need to provide the user

name and password of the Windows domain user you want to use for authentication. To do

so please select either the Credentials option or the Username & password option. In addition,

you need to specify the following entry in the JDBC Parameters tab:

domain=<<Windows domain name>>

For more details see the description of the domain property in the jTDS FAQ or see the

README.sso.

Kerberos authentication using the official driver for Microsoft SQL Server

To use this mode with the provided official driver for Microsoft SQL Server, simply select

Kerberos in the Authentication setting in the configuration window. In addition, you need to

specify the following entries in the JDBC Parameters tab:

authenticationScheme=JavaKerberos
integratedSecurity=true

For more details see the Microsoft documentation.

Connecting to SQL Pools in Azure Synapse Analytics

You can use the dedicated Microsoft SQL Server Connector node to connect to a dedicated

SQL pool or serverless SQL pool in Azure Synapse Analytics. Before connecting you need to

install the official driver for Microsoft SQL Server that is provided as an additional plug-in.

Please refer to Third-party Database Driver Plug-in for more information about the plug-in and

how to install it. It is also possible to use your own Microsoft SQL Server driver. To register

your own driver please refer to the Register your own JDBC drivers section.

To connect you need to obtain the serverless and/or dedicated SQL endpoint and a login user

e.g. the SQL administration user first. This information is available via the Synapse

workspace view in Azure Portal.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 30

http://jtds.sourceforge.net/faq.html
https://github.com/milesibastos/jTDS/blob/master/README.SSO
https://docs.microsoft.com/en-us/sql/connect/jdbc/using-kerberos-integrated-authentication-to-connect-to-sql-server
https://kni.me/n/lbG8X3On6ol70XyD
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/on-demand-workspace-overview
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server?view=sql-server-2017
https://portal.azure.com/

Figure 20. Synapse workspace view in Azure portal

Once you have the official driver installed and all necessary information available you can

configure the Microsoft SQL Server Connector node. To do so open the node dialog and enter

the serverless or dedicated SQL endpoint as hostname with master as default database.

Enter the login information into the authentication section as shown below. Instead of a

username and password you can also use Microsoft Entra ID login if this is configured in

your Synapse workspace using the Microsoft Authentication node and the dynamic input port

of the Microsoft SQL Server Connector.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 31

https://kni.me/n/lbG8X3On6ol70XyD
https://kni.me/n/UZkKlFCxy6dBn1IO

Figure 21. Microsoft SQL Server Connector dialog with connection settings

In addition you need to specify the following JDBC parameters via the JDBC Parameters tab:

• TrustServerCertificate: false

• encrypt: true

• hostNameInCertificate: *.sql.azuresynapse.net

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 32

Figure 22. JDBC parameters required for Azure Synapse

For more details about the JDBC parameters see the Microsoft documentation.

Finally, for serverless SQL pools you need to disabled transaction since they are not support

via the Advanced Tab by unselecting the Enabled value in the Transaction section.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 33

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/connect-overview

Figure 23. Disable transaction support via the Advanced tab

Connecting to Apache Hive™

To connect to Hive, you need to install the KNIME Big Data Connectors Extension.

The dedicated Hive Connector node is bundled by default with the open-source Apache Hive

JDBC driver. Proprietary drivers are also supported, but need to be registered first, such as

the Hive JDBC connector provided by Cloudera.

In this example we want to connect to Hive using the proprietary Cloudera Hive JDBC driver.

The first step is to download the latest Hive JDBC driver for Cloudera Enterprise. Then go to

File → Preferences → KNIME → Databases, and click Add.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 34

https://hub.knime.com/knime/extensions/org.knime.features.bigdata.connectors/latest
http://www.cloudera.com/downloads/connectors/hive/jdbc.html

Figure 24. Register new Apache Hive driver

In the new database driver window, provide the following information:

• ID: cloudera_hive, but you can enter your own driver ID as long as it only contains

alphanumeric characters and underscores.

• Name: Cloudera Hive, but you can enter your own driver name.

• Database type: Hive is available in the drop down list, so the database type is set to

hive.

• Description: My Hive driver, for example.

• URL template: Please make sure that this field contains

jdbc:hive2://<host>:<port>/[database]. Please refer to the JDBC URL Template

section for more information on the supported tokens e.g. host, port and database.

• Classpath: Click Add file to add the .jar file that contains the Hive JDBC driver. The

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 35

path to the driver file will then appear in the Classpath area.

• Driver class: clicking Find driver classes will automatically detect all available JDBC

driver classes and versions. Please make sure to select

com.cloudera.hive.jdbc41.HS2Driver.

Finally, click Ok and the newly added driver will appear in the database driver preferences

table. Click Apply and Close to apply the changes and you can start connecting to your Hive

database.

Figure 25. Database Preference page

Hive has a dedicated Connector node called Hive Connector, please refer to Connecting to

predefined databases on how to connect using dedicated Connector nodes.

Connecting to Apache Impala™

To connect to Apache Impala, you need to install the KNIME Big Data Connectors Extension.

The dedicated Impala Connector node is bundled by default with the open-source Apache

Hive JDBC driver, which is compatible with Impala. Proprietary drivers are also supported, but

need to be registered first, such as the Impala JDBC connector provided by Cloudera.

In this example we want to connect to Impala using the proprietary Cloudera Impala JDBC

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 36

https://hub.knime.com/knime/extensions/org.knime.features.bigdata.connectors/latest

driver. The first step is to download the latest Impala JDBC driver for Cloudera Enterprise.

Then go to File → Preferences → KNIME → Databases, and click Add.

Figure 26. Register new Apache Impala driver

In the new database driver window, provide the following information:

• ID: cloudera_impala, but you can enter your own driver ID as long as it only contains

alphanumeric characters and underscores.

• Name: Cloudera Impala, but you can enter your own driver name.

• Database type: Impala is available in the drop down list, so the database type is set to

impala.

• Description: My Impala driver, for example.

• URL template: By selecting impala in the Database type, the URL template is

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 37

http://www.cloudera.com/downloads/connectors/impala/jdbc.html

automatically preset to the default JDBC URL template for Impala, i.e

jdbc:impala://<host>:<port>/[database]. For more possible templates, simply click

on the URL Template syntax information directly below. Please refer to the JDBC URL

Template section for more information on the supported tokens e.g. host, port and

database.

• Classpath: Click Add file to add the .jar file that contains the Impala JDBC driver file.

The path to the driver file will then appear in the Classpath area.

• Driver class: clicking Find driver classes will automatically detect all available JDBC

driver classes and versions, which in this case is com.cloudera.impala.jdbc.Driver .

Finally, click Ok and the newly added driver will appear in the database driver preferences

table. Click Apply and Close to apply the changes and you can start connecting to your Impala

database.

Figure 27. Database Preference page

Impala has a dedicated Connector node called Impala Connector, please refer to Connecting

to predefined databases on how to connect using dedicated Connector nodes.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 38

Reading from a database

Figure 28. Reading from a database

The figure above is an example on how to read from a database. In this example we want to

read the flights dataset stored in an H2 database into a KNIME data table.

First you need a connector node to establish a connection to the database, in the example

above it is an H2 database. There are several dedicated connector nodes depending on

which database we want to connect to. For further details on how to connect to a database

refer to the Connecting to a database section .

Figure 29. DB Table Selector configuration

dialog

After the connection is established, the next

step is to use the DB Table Selector node

that allows selecting a table or a view

interactively based on the input database

connection.

The figure on the left side shows the

configuration dialog of the DB Table

Selector node. At the top part you can enter

the schema and the table/view name that

you want to select, in this example we want

to select the "flights" table.

Pressing the Select a table button will open a Database Metadata Browser window that lists

available tables/views in the database.

In addition, ticking the Custom Query checkbox will allow you to write your own custom SQL

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 39

http://stat-computing.org/dataexpo/2009/the-data.html

query to narrow down the result. It accepts any SELECT statement, and the placeholder

#table# can be used to refer to the table selected via the Select a table button.

The Input Type Mapping tab allows you to define mapping rules from database types to

KNIME types. For more information on this, please refer to the section Type Mapping.

The output of this node is a DB Data connection that contains the database information and

the SQL query automatically build by the framework that selects the entered table or the user

entered custom query. To read the selected table or view into KNIME Analytics Platform, you

can use the DB Reader node. Executing this node will execute the input SQL query in the

database and the output will be the result stored in a KNIME data table which will be stored

on the machine where KNIME Analytics Platform is running.

Database Metadata Browser

Figure 30. Database Metadata Browser

The Database Metadata Browser shows the

database schema, including all tables /

views and their corresponding columns and

column data types. At first opening it

fetches the metadata from the database

and caches it for subsequent use. By

clicking on an element (schema/table/view)

it shows the contained elements. To select

a table or view select the name and click OK

or double click the element.

The search box at the top of the window

allows you to search for any table or view

inside the database. At the bottom there is a

refresh button to re-fetch the schema list

with a time reference on how long ago the

schema was last refreshed.

If you have just created a table and you cannot find it in the schema list, it might

be that the metadata browser cache is not up to date, so please try to refresh

the list by clicking the refresh button at the lower right corner.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 40

Query Generation

Figure 31. DB Query nodes

Once you have successfully connected to

your database, there is a set of nodes that

provide in-database data manipulation, such

as aggregating, filtering, joining etc.

The database nodes come with a visual

user interface and automatically build a SQL

query in the background according to the

user settings in the configuration window,

so no coding is required to interact with the

database.

The output of each node is a SQL query that

corresponds to the operation(s) that are

performed within the node. The generated

SQL query can be extracted by using the DB

Query Extractor node.

Visual Query Generation

Figure 32. Example of a workflow that performs in-database data manipulation

The figure above shows an example of in-database data manipulation. In this example, we

read the flights dataset from a H2 database. First we filter the rows so that we take only the

flights that fulfil certain conditions. Then we calculate the average air time to each unique

destination airport. Finally we join the average values together with the original values and

then read the result into KNIME Analytics Platform.

The first step is to connect to a database and select the appropriate table we want to work

with.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 41

https://en.wikipedia.org/wiki/SQL
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.utility.extractor.DBQueryExtractorNodeFactory/
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.utility.extractor.DBQueryExtractorNodeFactory/
http://stat-computing.org/dataexpo/2009/the-data.html

DB Row Filter

Figure 33. DB Row Filter configuration dialog

After selecting the table, you can start working with the data. First we use the DB Row Filter

node to filter rows according to certain conditions. The figure above shows the configuration

dialog of the DB Row Filter. On the left side there is a Preview area that lists all conditions of

the filter to apply to the input data. Filters can be combined and grouped via logical operators

such as AND or OR. Only rows that fulfil the specified filter conditions will be kept in the

output data table. At the bottom there are options to:

• Add Condition: add more condition to the list

• Group: Create a new logical operator (AND or OR)

• Ungroup: Delete the currently selected logical operator

• Delete: Delete the selected condition from the list

To create a new condition click on the Add_Condition button. To edit a condition select in the

condition list which will show the selected condition in the condition editor on the right. The

editor consists of at least two dropdown lists. The most left one contains the columns from

the input data table, and the one next to it contains the operators that are compatible with the

selected column type, such as =, !=, <, >. Depending on the selected operation a third and

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 42

maybe fourth input field will be displayed to enter or select the filter values. The button next

to the values fields fetches all possible values for the selected column which will then be

available for selection in the value field.

Clicking on a logical operator in the Preview list would allow you to switch between AND or

OR, and to delete this operator by clicking Ungroup.

As in our example, we want to return all rows that fulfil the following conditions:

• Originate from the Chicago O’Hare airport (ORD) OR Hartsfield-Jackson Atlanta Airport

(ATL)

• AND occur during the month of June 2017

• AND have a mild arrival delay between 5 and 45 minutes

DB GroupBy

Figure 34. DB GroupBy: Manual Aggregation

The next step is to calculate the average air time to each unique destination airport using the

DB GroupBy node. To retrieve the number of rows per group tick the Add Count(*) checkbox in

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 43

the Advanced Settings. The name of the group count column can be changed via the result

column name field.

Figure 35. DB GroupBy: Group Settings

To calculate the average air time for each destination airport, we need to group by the Dest

column in the Groups tab, and in Manual Aggregation tab we select the ActualElapsedTime

column (air time) and AVG as the aggregation method.

DB Joiner

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 44

Figure 36. DB Joiner: Joiner Settings

To join the result back to the original data, we use the DB Joiner node, which joins two

database tables based on joining column(s) of both tables. In the Joiner settings tab, there

are options to choose the join mode, whether Inner Join, Full Outer Join, etc, and the joining

column(s).

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 45

Figure 37. DB Joiner: Column Selection

In the Column Selection tab you can select which columns from each of the table you want to

include in the output table. By default the joining columns from bottom input will not show up

in the output table.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 46

Advanced Query Building

Sometimes, using the predefined DB nodes for manipulating data in database is not enough.

This section will explain some of the DB nodes that allow users to write their own SQL

queries, such as DB Query, DB Query Reader, and Parametrized DB Query Reader node.

Figure 38. Example workflow with advanced query nodes

Each DB manipulation node, that gets a DB data object as input and returns a

DB data object as output, wraps the incoming SQL query into a sub-query.

However some databases don’t support sub-queries, and if that is the case,

please use the DB Query Reader node to read data from the database.

The figure below shows the configuration dialog of the DB Query node. The configuration

dialog of other advanced query nodes that allow user to write SQL statements provide a

similar user experience. There is a text area to write your own SQL statement, which provides

syntax highlighting and code completion by hitting Ctrl+Space. On the lower side there is an

Evaluate button where you can evaluate the SQL statement and return the first 10 rows of the

result. If there is an error in the SQL statement then an error message will be shown in the

Evaluate window. On the left side there is the Database Metadata Browser window that

allows you to browse the database metadata such as the tables and views and their

corresponding columns. The Database Column List contains the columns that are available in

the connected database table. Double clicking any of the items will insert its name at the

current cursor position in the SQL statement area.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 47

Figure 39. Configuration dialog of the DB Query node

DB Query

The DB Query node modifies the input SQL query from an incoming database data

connection. The SQL query from the predecessor is represented by the place holder #table#

and will be replaced during execution. The modified input query is then available at the

outport.

DB Query Reader

Executes an entered SQL query and returns the result as KNIME data table. This node does

not alter or wrap the query and thus supports all kinds of statements that return data.

This node supports other SQL statements beside SELECT, such as DESCRIBE

TABLE.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 48

Parameterized DB Query Reader

This node allows you to execute a SQL query with different parameters. It loops over the

input KNIME table and takes the values from the input table to parameterise the input SQL

query. Since the node has a KNIME data table input it provides a type mapping tab that

allows you to change the mapping rules. For more information on the Type Mapping tab,

please refer to the Type Mapping section.

DB Looping

This node runs SQL queries in the connected database restricted by the possible values given

by the input table. It restricts each SQL query so that only rows that match the possible

values from the input table are retrieved whereas the number of values per query can be

defined. This node is usually used to execute IN queries e.g.

SELECT * FROM table
WHERE Col1 IN ($Col1_values$)

During execution, the column placeholder $Col1_values$ will be replaced by a comma

separated list of values from the input table. Since the node has a KNIME data table input it

provides a type mapping tab that allows you to change the mapping rules. For more

information on the Type Mapping tab, please refer to the Type Mapping section.

An example of the usage of this node is available on KNIME Hub.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 49

https://en.wikipedia.org/wiki/Where_(SQL)#IN
https://kni.me/w/IlJ2mnZjT8CcJXWb

Database Structure Manipulation

Database Structure Manipulation refers to any manipulation to the database tables. The

following workflow demonstrates how to remove an existing table from a database using the

DB Table Remover and create a new table with the DB Table Creator node.

Figure 40. Example of a database structure manipulation workflow

DB Table Remover

Figure 41. DB Table Remover configuration dialog

This node removes a table from the database defined by the incoming database connection.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 50

Executing this node is equivalent to executing the SQL command DROP. In the configuration

dialog, there is an option to select the database table to be removed. The configuration is the

same as in the DB Table Selector node, where you can input the corresponding Schema and

the table name, or select it in the Database Metadata Browser.

The following options are available in the configuration window:

Cascade: Selecting this option means that removing a table that is referenced by other

tables/views will remove not only the table itself but also all dependent tables and views. If

this option is not supported by your database then it will be ignored.

Fail if table does not exist: Selecting this option means the node will fail if the selected table

does not exist in the database. By default, this option is not enabled, so the node will still

execute successfully even if the selected table does not exist in the database.

DB Table Creator

Figure 42. DB Table Creator: Settings

This node creates a new database table. The table can be created either manually, or

dynamically based on the input data table spec. It supports advanced options such as

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 51

https://en.wikipedia.org/wiki/Data_definition_language#DROP_statement
https://en.wikipedia.org/wiki/Data_definition_language#CREATE_statements

specifying if a column can contain null values or specifying primary key or unique keys as

well as the SQL type.

When the Use dynamic settings option is enabled the database table structure is defined by

the structure of the input KNIME data table. The Columns and Keys tabs are read only and

only help to verify the structure of the table that is created. The created database table

structure can be influenced by changing the type mapping e.g. by defining that KNIME double

columns should be written to the database as string columns the DB Table Creator will

choose the string equivalent database type for all double columns. This mapping and also

the key generation can be further influenced via the Dynamic Type Settings and Dynamic Key

Settings tabs.

In the Settings tab you can input the corresponding schema and table name. The following

options are available:

Create temporary table: Selecting this will create a temporary table. The handling of

temporary tables, such as how long it exists, the scope of it, etc depends on the database you

use. Please refer to your database vendor for more details on this.

Fail if table exists: Selecting this will make the node fail with database-specific error message

if the table already exists. By default, this option is disable, so the node will execute

successfully and not create any table if it already existed.

Use dynamic settings: Selecting this will allow the node to dynamically define the structure of

the database table e.g. column names and types based on the input KNIME table and the

dynamic settings tabs. Only if this option is enabled will the Dynamic Type Settings and

Dynamic Column Settings tab be available. The mappings defined in the Name-Based SQL

Type Mapping have a higher priority than the mappings defined in the KNIME-Based SQL Type

Mapping. If no mapping is defined in both tabs, the default mapping based on the Type

Mapping definitions of the database connector node are used. Note that while in dynamic

settings mode the Columns and Keys tab become read-only to allow you a preview of the

effect of the dynamic settings.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 52

Figure 43. DB Table Creator: Columns

In the Columns tab you can modify the mapping between the column names from the input

table and their corresponding SQL type manually. You can add or remove column and set the

appropriate SQL type for a specific column. However, if the Use dynamic settings is selected,

this tab become read-only and serves as a preview of the dynamic settings.

In the Key tab you can set certain columns as primary/unique keys manually. As in the

Columns tab, if the Use dynamic settings is enabled, this tab become read-only and serves as

a preview of the dynamic settings.

In the Additional Options tab you can write additional SQL statement which will be appended

after the CREATE TABLE statement, e.g storage parameter. This statement will be appended

to the end of the automatically generated CREATE TABLE statement and executed as a

single statement.

In the Dynamic Columns Settings there are two types of SQL Type Mapping, the Name-Based

and the KNIME-Based.

• In the Name-Based SQL Type Mapping you define the default SQL type mapping for a

set of columns based on the column names. You can add a new row containing the

name pattern of the columns that should be mapped. The name pattern can either be a

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 53

string with wildcard or a regular expression. The mappings defined in the Name-Based

SQL Type Mapping have a higher priority than the mappings defined in the KNIME-Based

SQL Type Mapping.

• In the KNIME-Type-Based SQL Type Mapping you can define the default SQL type

mapping based on a KNIME data type. You can add a new row containing the KNIME

data type that should be mapped.

In the Dynamic Keys Settings you can dynamically define the key definitions based on the

column names. You can add a new row containing the name pattern of the columns that

should be used to define a new key. The name pattern can either be a string with wildcard or

a regular expression.

Supported wildcards are * (matches any number of characters) and ? (matches

one character) e.g. KNI* would match all strings that start with KNI such as

KNIME whereas KNI? would match only strings that start with KNI followed by a

fourth character.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 54

DB Manipulation

This section describes various DB nodes for in-database manipulation, such as DB Delete

(Table), DB Writer, DB Insert, DB Update, DB Merge, and DB Loader node, as well as the

database transaction nodes.

Figure 44. Example of DB Manipulation

DB Delete

The database extension provides two nodes to delete rows from a selected table in the

database. The DB Delete (Table) node deletes all rows from the database table that match

the values of an input KNIME data table whereas the DB Delete (Filter) node deletes all rows

from the database table that match the specified filter conditions.

DB Delete (Table)

This node deletes rows from a selected table in the database. The input is a DB Connection

port that describes the database, and also a KNIME data table containing the values which

define which rows to delete from the database. It deletes data rows in the database based on

the selected columns from the input table. Therefore all selected column names need to

exactly match the column names inside the database. Only the rows in the database table

that match the value combinations of the selected columns from the KNIME input data table

will be deleted.

The figure below shows the configuration dialog of the DB Delete (Table) node. The

configuration dialog of the other nodes for DB Manipulation are very similar. You can enter

the table name and its corresponding schema or select the table name in the Database

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 55

https://en.wikipedia.org/wiki/Delete_(SQL)
https://en.wikipedia.org/wiki/Delete_(SQL)

Metadata Browser by clicking Select a table.

In addition the identification columns from the input table need to be selected. The names of

the selected KNIME table columns have to match the names in the selected database table.

All rows in the database table with matching values for the selected columns from the input

KNIME data table will be deleted. In SQL this is equivalent to the WHERE columns. There are

three options:

• Fail on error: if selected, the node will fail if any errors occur during execution otherwise

it will execute successfully even if one of the input rows caused an exception in the

database.

• Append delete status columns: if selected, it will add two extra columns in the output

table. The first column contains the number of rows affected by the DELETE statement.

A number greater or equal to zero indicates that the operation was performed

successfully. A value of -2 indicates that the operation was performed successfully but

the number of rows affected is unknown. The second column will contain a warning

message if any exists.

• Disable DB Data output port: If selected, it will disable the DB Data output port and the

execution of the metadata query at the end of the node execution which might cause

problems with databases that do not support subqueries.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 56

https://en.wikipedia.org/wiki/Where_(SQL)
https://en.wikipedia.org/wiki/Delete_(SQL)

Figure 45. Configuration dialog of the DB Delete (Table) node

The Output Type Mapping tab allows you to define mapping rules from KNIME types to

database types. For more information on this, please refer to the Type Mapping section.

DB Delete (Filter)

This node deletes rows from a selected table in the database that match the specified filter

conditions. The input is a DB Connection port that can be exchanged to a DB Data port. In

both cases the input port describes the database. The output port can be exchanged from a

DB Connection to a DB Data port as well.

In the node dialog of the DB Delete (Filter) node you can enter the table name and its

corresponding schema or select the table name in the Database Metadata Browser by

clicking Select a table. In addition you can specify the filter conditions that are used to

identify the rows in the database table that should be deleted. The conditions are used to

generate the WHERE clause of the DELETE statement. All rows that match the filter conditions

will be deleted.

For example, the settings specified in the figure shown below will delete all rows from the

flights table that took place prior the Year 2017 and that where neither Diverted nor Cancelled.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 57

https://en.wikipedia.org/wiki/Delete_(SQL)
https://en.wikipedia.org/wiki/Where_(SQL)
https://en.wikipedia.org/wiki/Delete_(SQL)

Figure 46. Configuration dialog of the DB Delete (Filter) node

An example of the usage of this node is available on KNIME Hub.

DB Writer

This node inserts the selected values from the input KNIME data table into the specified

database tables. It performs the same function as the DB Insert node, but in addition it also

creates the database table automatically if it does not exist prior inserting the values. The

newly created table will have a column for each selected input KNIME column. The database

column names will be the same as the names of the input KNIME columns. The database

column types are derived from the given KNIME types and the Type Mapping configuration.

All database columns will allow missing values (e.g. NULL).

Please use the DB Table Creator node if you want to control the properties of the created

database table.

There is also an option to overwrite an existing table by enabling the option Remove existing

table in the configuration window. Enabling the option will remove any table with the given

name from the database and then create a new one. If this option is not selected, the new

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 58

https://kni.me/w/B8iDUo_GcTro8THd
https://en.wikipedia.org/wiki/Insert_(SQL)

data rows will be appended to an existing table. Once the database table exists the node will

write all KNIME input rows into the database table in the same way as the DB Insert node.

DB Insert

This node inserts the selected values from the input KNIME data table into the specified

database tables. All selected column names need to exactly match the column names within

the database table.

DB Update

This node updates rows in the specified database table with values from the selected

columns of the input KNIME data table. The identification columns are used in the WHERE part

of the SQL statement and identify the rows in the database table that will be updated. The

columns to update are used in the SET part of the SQL statement and contain the values that

will be written to the matching rows in the selected database table.

DB Merge

The DB Merge node is a combination of the DB Update and DB Insert node. If the database

supports the functionality it executes a MERGE statement that inserts all new rows or updates

all existing rows in the selected database table. If the database does not support the merge

function the node first tries to update all rows in the database table and then inserts all rows

where no match was found during the update. The names of the selected KNIME table

columns need to match the names of the database table where the rows should be updated.

DB Loader

Starting from 4.3, the DB Loader node employs the new file handling

framework, which allows seamless migration between various file systems. For

more details, please check out the KNIME File Handling Guide.

This node performs database-specific bulk loading functionality that only some databases

(e.g. Hive, Impala, MySQL, PostgreSQL and H2) support to load large amounts of data into an

existing database table.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 59

https://en.wikipedia.org/wiki/Insert_(SQL)
https://en.wikipedia.org/wiki/Update_(SQL)
https://en.wikipedia.org/wiki/Where_(SQL)
https://en.wikipedia.org/wiki/Merge_(SQL)
https://docs.knime.com/2024-06/analytics_platform_file_handling_guide/index.pdf#_read_and_write_from_or_to_a_connected_file_system

Most databases do not perform data checks when loading the data into the

table which might lead to a corrupt data table. The node does perform some

preliminary checks such as checking that the column order and column names

of the input KNIME data table are compatible with the selected database table.

However it does not check the column type compatibility or the values itself.

Please make sure that the column types and values of the KNIME table are

compatible with the database table.

Depending on the database an intermediate file format (e.g. CSV, Parquet, ORC) is often used

for efficiency which might be required to upload the file to a server. If a file needs to be

uploaded, any of the protocols supported by the file handling nodes and the database can be

used, e.g. SSH/SCP or FTP. After the loading of the data into a table, the uploaded file gets

deleted if it is no longer needed by the database. If there is no need to upload or store the file

for any reason, a file connection prevents execution.

Some databases such as MySQL and PostgreSQL support file-based and memory-based

uploading which require different rights in the database. For example, if you do not have the

rights to execute the file-based loading of the data try the memory-based method instead.

If the database supports various loading methods (file-based or memory-

based), you can select the method in the Options tab, as shown in the example

below. Otherwise the Loader mode option will not appear in the configuration

dialog.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 60

Figure 47. DB Loader: Option

Depending on the connected database the dialog settings may change. For example, MySQL

and PostgreSQL use a CSV file for the data transfer. In order to change how the CSV file is

created go to the Advanced tab.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 61

Figure 48. DB Loader: Advanced

DB Transaction Nodes

The database extension also provides nodes to simulate database transaction. A transaction

allows you to group several database data manipulation operations into a single unit of work.

This unit either executes entirely or not at all.

DB Transaction Start

The DB Transaction Start node starts a transaction using the input database connection. As

long as the transaction is in process, the input database connection cannot be used outside

of the transaction. Depending on the isolation level, other connections might not see any

changes in the database while the transaction is in process. The transaction uses the default

isolation level of the connected database.

DB Transaction End

The DB Transaction End node ends the transaction of the input database connection. The

node ends the transaction with a commit that makes all changes visible to other users if

executed successfully. Otherwise the node ends the transaction with a rollback returning the

database to the state at the beginning of the transaction.

This node has 2 input ports. The first one is the transactional DB connection port which

should be connected to from the end of the transaction chain. The second port should

contain the transactional DB connection from the output of the DB Transaction Start node. If

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 62

https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Rollback_(data_management)

the transaction is successful and a commit is executed, the DB connection from the first

input port will be forwarded to the output port, otherwise in case of a rollback, the DB

connection from the second input port will be forwarded.

The figure below shows an example of the transaction nodes. In this example, the

transaction consists of two DB Writer nodes that write data to the same table consecutively.

If an error occurs during any step of the writing, the changes will not be executed and the

database will be returned to the previous state at the beginning of the transaction. If no error

occurs, the changes to the database will be commited.

Figure 49. DB Transaction Nodes

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 63

Type Mapping

The database framework allows you to define rules to map from database types to KNIME

types and vice versa. This is necessary because databases support different sets of types

e.g. Oracle only has one numeric type with different precisions to represent integers but also

floating-point numbers whereas KNIME uses different types (integer, long, double) to

represent them.

Especially date and time formats are supported differently across different databases. For

example the zoned date time type that is used in KNIME to represent a time point within a

defined time zone is only supported by few databases. But with the type mapping framework

you can force KNIME to automatically convert the zoned date time type to string before

writing it into a database table and to convert the string back into a zoned date time value

when reading it.

The type mapping framework consists of a set of mapping rules for each direction specified

from the KNIME Analytics Platform view point:

• Output Type Mapping: The mapping of KNIME types to database types

• Input Type Mapping: The mapping from database types to KNIME types

Each of the mapping direction has two sets of rules:

• Mapping by Name: Mapping rules based on a column name (or regular expression) and

type. Only column that match both criteria are considered.

• Mapping by Type: Mapping rules based on a KNIME or database type. All columns of

the specified data type are considered.

The type mapping can be defined and altered at various places in the analysis workflow. The

basic configuration can be done in the different connector nodes. They come with a sensible

database specific default mapping. The type mapping rules are part of the DB Connection

and DB Data connections and inherited from preceding nodes. In addition to the connector

nodes provide all database nodes with a KNIME data table a Output Type Mapping tab to map

the data types of the nodes input KNIME columns to the types of the corresponding database

columns.

The mapping of database types to KNIME types can be altered for any DB Data connection

via the DB Type Mapper node.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 64

https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html
https://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html

DB Type Mapper

The DB Type Mapper node changes the database to KNIME type mapping configuration for

subsequent nodes by selecting a KNIME type to the given database Type. The configuration

dialog allows you to add new or change existing type mapping rules. All new or altered rules

are marked as bold.

Figure 50. DB Type Mapper configuration dialog

 Rules from preceding nodes can not be deleted but only altered.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 65

Migration

This section explains how to migrate your workflow that contains deprecated database

nodes to the new database framework. The Workflow Migration Tool can be used to guide

you through the process and convert the deprecated database nodes to the corresponding

new database nodes. For the mapping between the deprecated and the new nodes, please

look at the list in the Node Name Mapping section.

All previously registered JDBC drivers need to be re-registered. For more

information on how to register a driver in the new database framework, please

refer to the Register your own JDBC drivers section.

Workflow Migration Tool

The workflow migration tool is still in preview. We will continue to add new and

revise existing functionality.

The workflow migration tool assists you to migrate existing workflows that contain

deprecated database nodes to the new database nodes. The tool does not change any

existing workflow but performs the migration on a copy of the original workflow.

As an example, we can see in the figure below a workflow that contains deprecated database

nodes. The goal is to use the Workflow Migration Tool to help us migrating the deprecated

nodes to the new database nodes.

Figure 51. Workflow containing deprecated Database nodes

In order to start the Workflow Migration tool we simply need to open the workflow containing

the deprecated database nodes that you want to migrate. A message will appear at the top of

the workflow with the option to migrate the workflow (see figure above).

Clicking on Migrate workflow… will open the migration wizard window as shown below. In this

window, you can change the workflow to migrate (the one containing the deprecated

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 66

database nodes), and enter the name for the new workflow, which is a copy of the old

workflow but with the deprecated database nodes replaced with the new ones (if available).

The default name for the new workflow is the name of the old workflow with (migrated)

attached as suffix.

 The original workflow will not be modified throughout the migration process.

Figure 52. Migration Tool: Select the workflow

Click next to get to the next page, as shown below. At this stage the workflow will be

analysed, and all deprecated database nodes for which a migration rule exists will be listed

here, along with their equivalent new nodes. The tool also performs a preliminary check and

shows any potential problems. If you agree with the mapping suggestion, click Next to

perform the migration process.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 67

Figure 53. Migration Tool: Show the potential mapping

After the migration process is finished, you can see the migration report like the one shown

below. If any warnings or problems happened during the migration process, corresponding

messages will be shown in the report. You also have the option to save and open the

migration report in HTML format.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 68

Figure 54. Migration Tool: Migration report

The figure below shows the migrated workflow where all deprecated database nodes are

replaced by the new database nodes while keeping all the settings intact.

Figure 55. New workflow containing migrated DB nodes

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 69

Disabling the workflow migration message

If you don’t want to migrate and want to disable the migration message, click on Disable this

message in the message. The Preferences → Databases page will open where you can

uncheck the option Offer the migration of workflows that contain deprecated database nodes

as shown in the figure below. Click Apply and Close to save the setting and the message will

not appear anymore if you open a workflow containing deprecated database nodes. To

reverse this setting, simply open Preferences → Databases page again and enable the check

box.

Figure 56. Disabling migration message

Node Name Mapping

The table below shows the mapping between the deprecated database nodes and the new

database nodes.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 70

Deprecated Database nodes New Database nodes

Amazon Athena Connector Amazon Athena Connector

Amazon Redshift Connector Amazon Redshift Connector

Database Apply-Binner DB Apply-Binner

Database Auto-Binner DB Auto-Binner

Database Column Filter DB Column Filter

Database Column Rename DB Column Rename

Database Connection Table Reader DB Reader

Database Connection Table Writer DB Connection Table Writer

Database Connector DB Connector

Database Delete DB Delete (Table) or DB Delete (Filter)

Database Drop Table DB Table Remover

Database GroupBy DB GroupBy

Database Joiner DB Joiner

Database Looping DB Looping

Database Numeric-Binner DB Numeric-Binner

Database Pivot DB Pivot

Database Query DB Query

Database Reader DB Query Reader

Database Row Filter DB Row Filter

Database Sampling DB Row Sampling

Database Sorter DB Sorter

Database SQL Executor DB SQL Executor

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 71

https://kni.me/n/2C9b4kBscRLvFL-D
https://kni.me/n/E-An79icdXjWpKj6
https://kni.me/n/fyJKtYKjBMLx8ima
https://kni.me/n/iLXRg0pA06FhIZ40
https://kni.me/n/uZeXvabxqmm1IjdI
https://kni.me/n/ZFTMfAcnw-dtq-Pb
https://kni.me/n/d8TQIqNnO3XRVTjQ
https://kni.me/n/Ts6MTyaKUWegubym
https://kni.me/n/0oD8015Fv-UmISSY
https://kni.me/n/vWF0ek7PNJqiIt2y
https://kni.me/n/5lTIm-NFbrB3BYAG
https://kni.me/n/YJIwMkiTMpJtVTUT
https://kni.me/n/FWHpi7M8fzVHRit0
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.io.looping.DBLoopingNodeFactory/
https://kni.me/n/v_ErMw_XNCPu_fk7
https://kni.me/n/gIBWKlZplEZzaz2M
https://kni.me/n/mgAu4IAMHNlmybx4
https://kni.me/n/QGIJwvJk9FCppQZY
https://kni.me/n/5nnLXgQCDPb0sDP1
https://kni.me/n/4hFtwIsFE99gW1Q6
https://kni.me/n/eTH6FxdMQbNIhJqB
https://kni.me/n/eh-RgddvYOj-B0uz

Deprecated Database nodes New Database nodes

Database Table Connector Can be replaced with DB Connector and DB

Table Selector

Database Table Creator DB Table Creator

Database Table Selector DB Table Selector

Database Update DB Update

Database Writer DB Writer

H2 Connector H2 Connector

Hive Connector Hive Connector

Hive Loader DB Loader

Impala Connector Impala Connector

Impala Loader DB Loader

Microsoft SQL Server Connector Microsoft SQL Server Connector

MySQL Connector MySQL Connector

Parameterized Database Query Parameterized DB Query Reader

PostgreSQL Connector PostgreSQL Connector

SQL Extract DB Query Extractor

SQL Inject DB Query Injector

SQLite Connector SQLite Connector

Vertica Connector Vertica Connector

- Microsoft Access Connector

- DB Insert

- DB Merge

- DB Column Rename (Regex)

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 72

https://kni.me/n/0oD8015Fv-UmISSY
https://kni.me/n/PEWSVICzt9HX-3cd
https://kni.me/n/PEWSVICzt9HX-3cd
https://kni.me/n/VmAVgBlFukX0ovLM
https://kni.me/n/PEWSVICzt9HX-3cd
https://kni.me/n/KuXiyWMTKZm85hNE
https://kni.me/n/qRJNy8b3IRKvagpR
https://kni.me/n/z2dT6kTIxaVpKjK8
https://kni.me/n/ATns-Fz0hAtG1MXG
https://kni.me/n/hp8L4I_m6lJfldj5
https://kni.me/n/-8OyFOkdw9zGW5iC
https://kni.me/n/hp8L4I_m6lJfldj5
https://kni.me/n/lbG8X3On6ol70XyD
https://kni.me/n/GfNJC-YQjg73CTHL
https://kni.me/n/XGaHanhyHTSgL1A1
https://kni.me/n/vYZkkzinhJnGCaSF
https://kni.me/n/LmSmXPetKridRFN8
https://kni.me/n/AUjb7j_lSM4kXS2t
https://kni.me/n/SgIj4Vj8JxxgNk1V
https://kni.me/n/H8ddctJNqjbzRhjW
https://kni.me/n/gYdNFHIzos2alqQ7
https://kni.me/n/0vNGuKOukHEP84tE
https://kni.me/n/pOeK5_nFRj2oJkV9
https://kni.me/n/rPu0ZkqfZ-sXwzeS

Deprecated Database nodes New Database nodes

- DB Partitioning

- DB Type Mapper

Register your own JDBC drivers for the deprecated database
framework

The JDBC driver registration page for the deprecated database framework is no longer visible

in the KNIME preferences. However, drivers can still be registered for the deprecated

database framework.

This section is only valid if you use the Database Connector (deprecated) node.

To register driver for the new database framework e.g. the DB Connector node

refer to the Register your own JDBC drivers section.

To register new drivers, you need to create a new text file with the name driver.epf and the

following content:

\!/=
/instance/org.knime.workbench.core/database_drivers=<PATH_TO_THE_JDBC_DRIVER>
file_export_version=3.0

Here <PATH_TO_THE_JDBC_DRIVER> refers to the path that points to the drivers jar file. You can

register several drivers by concatenating the paths with ; as separator. The following shows

an example that registers two different JDBC driver (DB2 and Neo4J) with windows file path

notation.

\!/=
/instance/org.knime.workbench.core/database_drivers=C\:\\KNIME\\JDBC\\db2\\db2jcc4.jar;C
\:\\KNIME\\JDBC\\Neo4J\\neo4j-jdbc-driver-3.4.0.jar
file_export_version=3.0

If you use windows path notation in the <PATH_TO_THE_JDBC_DRIVER> that

includes backslashes each backslash has to be escaped by a second

backslash.

Once created you need to import the driver.epf file into the KNIME Analytics Platform via

File→Import Preferences. After importing the driver preferences file, you need to restart

KNIME Analytics Platform to have the legacy database framework pickup the new driver files.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 73

https://kni.me/n/NKuW-RponmBdKGHF
https://kni.me/n/dX5ZVrdV7Jw2Sp0u
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.io.database.connection.JDBCConnectorNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.node.connector.generic.DBConnectorNodeFactory/

Business Hub / Server Setup

This section contains everything related to executing workflows that contain database nodes

on KNIME Hub and KNIME Server.

JDBC drivers on KNIME Hub and KNIME Server

KNIME Hub allows you to upload customization profiles to set up JDBC drivers on KNIME

Hub executors and KNIME Analytics Platform clients.

KNIME Server also allows you to define customization profiles to automatically set up JDBC

drivers on its own executors as well as KNIME Analytics Platform clients.

Instead of customization profiles, it is also possible to register JDBC drivers directly on the

executor with a preferences file. In this case however, the preferences of the server executor

and all KNIME Analytics Platform clients need to be kept in sync manually, so that the same

drivers are available on both ends.

Server-side steps

1. Create a profile folder inside <server-repository>/config/client-profiles. The name

of the folder corresponds to the name of the profile. The folder will hold preferences

and other files to be distributed.

2. Copy the .jar file that contains the JDBC driver into the profile folder.

3. Inside the profile folder, create a preferences file (file name ends with .epf) with the

following contents:

/instance/org.knime.database/drivers/<DRIVER_ID>/database_type=<DATABASE>
/instance/org.knime.database/drivers/<DRIVER_ID>/driver_class=<DRIVER_CLASS_NAME>
/instance/org.knime.database/drivers/<DRIVER_ID>/paths/0=${profile:location}/<DRIV
ER_JAR>
/instance/org.knime.database/drivers/<DRIVER_ID>/url_template=<URL_TEMPLATE>
/instance/org.knime.database/drivers/<DRIVER_ID>/version=<DRIVER_VERSION>

Where:

◦ <DRIVER_ID>: A unique ID for the JDBC driver, consisting only of alphanumeric

characters and underscores.

◦ <DATABASE>: The database type. Please consult the preference page shown in

Register your own JDBC drivers for the list of currently available types.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 74

https://docs.knime.com/2024-06/business_hub_user_guide/index.pdf#hub_customization_profiles
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#management-client-preferences
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file

◦ <DRIVER_CLASS_NAME>: The JDBC driver class, for example

oracle.jdbc.OracleDriver for Oracle.

◦ <DRIVER_JAR>: The name of the .jar file (including the file extension) that

contains the JDBC driver class. Note that the variable ${profile:location}

stands for the location of the profile folder on each client that downloads the

customization profile. It will be automatically replaced with the the correct

location by each client.

◦ <URL_TEMPLATE>: The JDBC URL template to use for the driver. Please refer to the

JDBC URL Template section for more information. Note that colons (:) and

backslashes (\) have to be escaped with a backslash. Example:

jdbc\:oracle\:thin\:@<host>\:<port>/<database>

◦ <DRIVER_VERSION>: The version of the JDBC driver e.g. 12.2.0. The value can be

chosen at will.

4. KNIME Server executors need to be made aware of a customization profile, by adding

this information to the knime.ini file, so that they can request it from KNIME Server.

Please consult the respective section of the KNIME Server Administration Guide on how

to set this up.

Please note that there are database-specific examples at the end of this

section.

Client-side steps

KNIME Analytics Platform clients need to be made aware of a customization profile so that

they can request it from KNIME Server. Please consult the respective section of the KNIME

Server Administration Guide for a complete reference on how to set this up.

In KNIME Analytics Platform, you can go to File → Preferences → KNIME → Customization

Profiles. This opens the Customization Profiles page where you can choose which KNIME

Server and profile to use. The changes will take effect after restarting KNIME Analytics

Platform.

To see whether the driver has been added, go to File → Preferences → KNIME → Databases.

In this page, drivers that are added via a customization profile are marked as origin: profile

after the driver ID (see figure below). These drivers can be edited but not deleted. To delete a

profile driver, please go to the Customization Profiles page and unselect the respective

profile.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 75

https://docs.knime.com/2024-06/server_admin_guide/index.pdf#client-side-setup
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#client-side-setup
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#client-side-setup

Figure 57. DB Preferences page

Default JDBC Parameters

Default JDBC Parameters provide a way for hub admins to inject JDBC parameters on JDBC

connections made from workflows running on KNIME Hub. These parameters take

precedence over values specified in the connector node. To specify an additional JDBC

parameter, add the following lines to the .epf file of your customization profile:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/org.knime.databas
e.util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>/type=<TY
PE>
/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/org.knime.databas
e.util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>/value=<V
ALUE>

Where:

• <DRIVER_ID>: The unique ID for the JDBC driver.

• <JDBC_PARAMETER>: The name of the JDBC parameter to set.

• <TYPE> and <VALUE>: A type and value that specifies what to set the JDBC parameter to.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 76

<TYPE> and <VALUE> can be chosen as follows:

◦ Setting <TYPE> to CONTEXT_PROPERTY allows to specify workflow context related

properties. <VALUE> can be set to one of:

▪ context.workflow.name: The name of the KNIME workflow.

▪ context.workflow.path: The mountpoint-relative workflow path.

▪ context.workflow.absolute-path: The absolute workflow path.

▪ context.workflow.username: The name of the KNIME Hub or KNIME Server

user that executes the workflow.

▪ context.workflow.temp.location: The path of the workflow temporary

location.

▪ context.workflow.author.name: The name of the workflow author.

▪ context.workflow.last.editor.name: The name of the user who last edited

the workflow.

▪ context.workflow.creation.date: The creation date of the workflow.

▪ context.workflow.last.time.modified: The last modified time of the

workflow.

▪ context.job.id: The job id when run on KNIME Hub or KNIME Server.

◦ Setting <TYPE> to CREDENTIALS_LOGIN allows to specify the login name from a

credentials flow variable. Set <VALUE> to the name of the flow variable. Please

note that the value is the name of the credentials flow variable to get the login

from but not the login itself.

◦ Setting <TYPE> to CREDENTIALS_PASSWORD allows to specify the password from a

credentials flow variable. Set <VALUE> to the name of the flow variable. Please

note that the value is the name of the credentials flow variable to get the

password from but not the password itself.

◦ Setting <TYPE> to DELEGATED_GSS_CREDENTIAL allows to pass in a delegated GSS

credential. The credential is only available for Kerberos authentication and during

KNIME Hub execution. The KNIME Hub executor creates the delegated GSS

credential in the name of the current KNIME Hub user that executes the workflow.

Do not set any <VALUE> for this parameter type. For an example on how to use this

parameter see the Microsoft SQL Hub example.

◦ Setting <TYPE> to FLOW_VARIABLE allows to specify a flow variable. Set <VALUE> to

the name of the flow variable.

◦ Setting <TYPE> to GSS_PRINCIPAL_NAME allows to pass in the principal name of the

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 77

(delegated) Kerberos user e.g., User@REALM.COM. The Kerberos principal name is

only available for Kerberos authentication. Do not set any <VALUE> for this

parameter type. For an example on how to use this parameter see the PostgreSQL

example.

◦ Setting <TYPE> to GSS_PRINCIPAL_NAME_WITHOUT_REALM allows to pass in the

principal name without the REALM of the (delegated) Kerberos user. For example,

if the Kerberos principal name is User@REALM.COM the value will be User. The

Kerberos principal name is only available for Kerberos authentication. Do not set

any <VALUE> for this parameter type. For an example on how to use this parameter

see the PostgreSQL example.

◦ Setting <TYPE> to LITERAL allows to specify a literal value that does not undergo

any further substitution. Set <VALUE> to the literal value.

◦ Setting <TYPE> to LOCAL_URL allows to specify a URL in <VALUE>, such as a "knime"

URL.

Please note that there are database-specific examples at the end of this

section.

Reserved JDBC Parameters

Certain JDBC parameters can cause security issues when a workflow is executed on KNIME

Hub, e.g. DelegationUID for Impala/Hive connections using a Simba based driver. Such

parameters can be marked as reserved to prevent workflows from using them on KNIME

Hub. To set a parameter as reserved, add the following lines to the .epf file of your

customization profile:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/reserved/org.knime.database.
util.DerivableProperties/knime.db.connection.jdbc.properties/<JDBC_PARAMETER>=true

Or the shorter version:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/reserved/*/knime.db.connecti
on.jdbc.properties/<JDBC_PARAMETER>=true

Where:

• <DRIVER_ID>: The unique ID for the JDBC driver.

• <JDBC_PARAMETER>: The name of the JDBC parameter.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 78

https://www.simba.com/drivers/

Please note that there are database-specific examples at the end of this

section.

Connection Initialization Statement

The connection initialization statement provides a way for hub admins to inject a SQL

statement that is executed when a JDBC connection is created from a workflow running on

KNIME Hub. This statement takes precedence over all other statements executed within the

workflow. To specify an initialization statement, add the following line to the .epf file of your

customization profile:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/java.lang.String/
knime.db.connection.init_statement/value=<VALUE>

Where:

• <DRIVER_ID>: The unique ID for the JDBC driver.

• <VALUE>: A value that specifies the statement to execute. It is possible to use

CONTEXT_PROPERTY variables inside the <VALUE>. These variables are replaced by the

workflow context related properties right before the statement is executed. These

variables have the following format: ${variable-name}. The following variable names

are available:

◦ context.workflow.name: The name of the KNIME workflow.

◦ context.workflow.path: The mountpoint-relative workflow path.

◦ context.workflow.absolute-path: The absolute workflow path.

◦ context.workflow.username: The name of the KNIME Hub or KNIME Server user

that executes the workflow.

◦ context.workflow.temp.location: The path of the workflow temporary location.

◦ context.workflow.author.name: The name of the workflow author.

◦ context.workflow.last.editor.name: The name of the user who last edited the

workflow.

◦ context.workflow.creation.date: The creation date of the workflow.

◦ context.workflow.last.time.modified: The last modified time of the workflow.

◦ context.job.id: The job id when run on KNIME Hub or KNIME Server.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 79

Kerberos Constrained Delegation

This section describes how to configure KNIME Hub to perform Kerberos constrained

delegation (or user impersonation) when connecting to a Kerberos-secured database such as

Apache Hive, Apache Impala, Microsoft SQL Server or PostgreSQL. Constrained delegation

allows the KNIME Hub to execute database operations on behalf of the user that executes a

workflow on a KNIME Hub Executor rather than the KNIME Executor Kerberos ticket user.

To get started, you need to configure the KNIME Hub to authenticate itself against Kerberos.

To do so you need to setup the KNIME Hub Executors as described in the Kerberos Admin

Guide.

Once all KNIME Hub Executors are setup to obtain a Kerberos ticket you can enable Kerberos

constrained delegation for individual JDBC drivers using one of the following methods.

Please note that there are database-specific examples at the end of this

section.

Default JDBC Parameters

Default JDBC Parameters provide a way for hub admins to inject JDBC parameters on JDBC

connections made from workflows running on KNIME Hub. Depending on the database a

different parameter and value is used to perform constrained delegation. Some drivers only

require the name of the user that should be impersonated. This can be done using the name

of the KNIME Hub user that executes the workflow (context.workflow.username) as the

value of the driver specific property. See Hive or Impala for an example. Other drivers require

the delegated GSS credential as parameter which can automatically be passed to the driver

via the value type DELEGATED_GSS_CREDENTIAL. The GSS credential is obtained using the MS-

SFU Kerberos 5 Extension. See Microsoft SQL Server for an example.

Service Ticket Delegation

If the driver does not provide a dedicated parameter to do constrained delegation the KNIME

Executor can request a Kerberos service ticket on behalf of the user that executes the

workflow using the MS-SFU Kerberos 5 Extension. The obtained service ticket is then used by

the JDBC driver when establishing the connection to the database.

To request the service ticket the KNIME Executor requires the service name and the fully

qualified hostname. To specify the service name add the following line to the .epf file of your

KNIME Executors customization profile:

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 80

https://docs.microsoft.com/en-us/windows-server/security/kerberos/kerberos-constrained-delegation-overview
https://docs.microsoft.com/en-us/windows-server/security/kerberos/kerberos-constrained-delegation-overview
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf#_what_is_user_impersonation
https://docs.knime.com/2024-06/kerberos_admin_guide/index.pdf#overview
https://docs.knime.com/2024-06/kerberos_admin_guide/index.pdf#overview
https://openjdk.java.net/jeps/113
https://openjdk.java.net/jeps/113
https://openjdk.java.net/jeps/113

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/java.lang.String/
knime.db.connection.kerberos_delegation.service/value=<VALUE>

Whereas <VALUE> is the name of the service to request the Kerberos ticket for. See

PostgreSQL for an example.

The fully qualified hostname is automatically extracted from the hostname setting for all

dedicated connector nodes. For the generic DB Connector node the name is extracted from

the JDBC connection string using a default regular expression (.*(?:@|/)([^:;,/\\]*).*)

that should work out of the box for most JDBC strings. However if necessary it can be

changed by adding the following line to the .epf file of your KNIME Executors customization

profile:

/instance/org.knime.database/drivers/<DRIVER_ID>/attributes/additional/java.lang.String/
knime.db.connection.kerberos_delegation.host_regex/value=<VALUE>

The <VALUE> should contain a regular expression that extracts the fully qualified hostname

from the JDBC URL with the first group matching the hostname.

Connection Initialization Statement

The connection initialization statement provides a way for Hub admins to inject a SQL

statement that is executed when a JDBC connection is created from a workflow running on

KNIME Hub. This function can be used for constrained delegation in some databases such

as Exasol by executing a specific SQL statement with the context.workflow.username as

variable e.g.

IMPERSONATE ${context.workflow.username};

Example: Apache Hive™

Connections to Apache Hive require further setup steps depending on the used JDBC driver.

In this example we will show how to:

1. Register the proprietary Hive JDBC driver provided by Cloudera on KNIME Hub.

2. Configure user impersonation on KNIME Hub (for both embedded and proprietary Hive

JDBC driver).

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 81

https://docs.exasol.com/sql/impersonate.htm
http://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf

Proprietary Simba-based JDBC driver registration

If the use of embedded open-source Apache Hive JDBC Driver is preferred, skip

to the next section.

1. Download the proprietary Hive JDBC driver from the Cloudera website.

2. Create the profile folder inside <server-repository>/config/client-profiles and

name it ClouderaHive (for example).

3. Copy HiveJDBC41.jar from the downloaded JDBC driver into the newly created profile

folder.

4. In the profile folder, create a new preferences file called hive.epf (for example) with the

following contents:

/instance/org.knime.database/drivers/cloudera_hive/database_type=hive
/instance/org.knime.database/drivers/cloudera_hive/driver_class=com.cloudera.hive.
jdbc41.HS2Driver
/instance/org.knime.database/drivers/cloudera_hive/paths/0=${profile:location}/Hiv
eJDBC41.jar
/instance/org.knime.database/drivers/cloudera_hive/url_template=jdbc\:hive2\://<ho
st>\:<port>/[database]
/instance/org.knime.database/drivers/cloudera_hive/version=2.6.0

5. If, as recommended, KNIME Hub has to impersonate workflow users, go to the next

section.

User impersonation on Hive

This example sets up the Hive JDBC driver (embedded or proprietary) so that KNIME Hub will

impersonate workflow users on JDBC connections.

Activating user impersonation on Hive depends on the used JDBC driver:

• For the embedded Apache Hive JDBC driver, add the following lines to the KNIME Hub

preferences file.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 82

http://www.cloudera.com/downloads/connectors/hive/jdbc.html
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file

/instance/org.knime.database/drivers/hive/attributes/additional/org.knime.database.util.
DerivableProperties/knime.db.connection.jdbc.properties/hive.server2.proxy.user/type=CON
TEXT_PROPERTY
/instance/org.knime.database/drivers/hive/attributes/additional/org.knime.database.util.
DerivableProperties/knime.db.connection.jdbc.properties/hive.server2.proxy.user/value=co
ntext.workflow.username
/instance/org.knime.database/drivers/hive/attributes/reserved/*/knime.db.connection.jdbc
.properties/hive.server2.proxy.user=true

• For the proprietary Simba-based JDBC driver, add the following lines to the preferences

file (use the preferences file created in the previous step (step 4).

/instance/org.knime.database/drivers/cloudera_hive/attributes/additional/org.knime.datab
ase.util.DerivableProperties/knime.db.connection.jdbc.properties/DelegationUID/type=CONT
EXT_PROPERTY
/instance/org.knime.database/drivers/cloudera_hive/attributes/additional/org.knime.datab
ase.util.DerivableProperties/knime.db.connection.jdbc.properties/DelegationUID/value=con
text.workflow.username
/instance/org.knime.database/drivers/cloudera_hive/attributes/reserved/*/knime.db.connec
tion.jdbc.properties/DelegationUID=true

Example: Apache Impala™

In this example we will register the proprietary Impala JDBC driver provided by Cloudera on

KNIME Hub. This example sets up the driver so that KNIME Hub will impersonate workflow

users on JDBC connections.

If you use the embedded open-source Apache Hive JDBC Driver (for Impala), you

don’t need to do this step. However, please note that in this case user

impersonation on KNIME Hub is not possible due to limitations of the driver.

1. Download the proprietary Impala JDBC from the Cloudera website.

2. Create the profile folder inside <server-repository>/config/client-profiles and

name it ClouderaImpala (for example).

3. Copy ImpalaJDBC41.jar from the downloaded JDBC driver into the newly created profile

folder.

4. In the profile folder, create a new preferences file called impala.epf (for example) with

the following contents:

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 83

http://www.cloudera.com/downloads/connectors/impala/jdbc.html
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
http://www.cloudera.com/downloads/connectors/impala/jdbc.html

/instance/org.knime.database/drivers/cloudera_impala/database_type=impala
/instance/org.knime.database/drivers/cloudera_impala/driver_class=com.cloudera.imp
ala.jdbc.Driver
/instance/org.knime.database/drivers/cloudera_impala/paths/0=${profile:location}/I
mpalaJDBC41.jar
/instance/org.knime.database/drivers/cloudera_impala/url_template=jdbc\:impala\://
<host>\:<port>/[database]
/instance/org.knime.database/drivers/cloudera_impala/version=2.6.0
/instance/org.knime.database/drivers/cloudera_impala/attributes/additional/org.kni
me.database.util.DerivableProperties/knime.db.connection.jdbc.properties/Delegatio
nUID/type=CONTEXT_PROPERTY
/instance/org.knime.database/drivers/cloudera_impala/attributes/additional/org.kni
me.database.util.DerivableProperties/knime.db.connection.jdbc.properties/Delegatio
nUID/value=context.workflow.username
/instance/org.knime.database/drivers/cloudera_impala/attributes/reserved/*/knime.d
b.connection.jdbc.properties/DelegationUID=true

Note that the last three lines use the DelegationUID JDBC parameter to force user

impersonation (recommended). If you do not want KNIME Hub to impersonate

workflow users you can remove the last three lines.

Example: Microsoft SQL Server

Connections to Microsoft SQL Server require further setup steps. In this example we will

show how to:

1. Register the SQL Server JDBC driver provided by Microsoft on KNIME Hub.

2. Configure user impersonation on KNIME Hub which is recommended for Kerberos

authentication.

Microsoft driver installation

The SQL Server JDBC driver from Microsoft requires some special licensing that you need to

agree to. That is why KNIME provides an additional plug-in to install the driver. In order to

install the plug-in follow the steps as described in the Third-party Database Driver Plug-in

section.

Constrained delegation on Microsoft SQL Server

If you use Kerberos based authentication for Microsoft SQL Server, we recommend to also

setup user impersonation. This example sets up the Microsoft SQL Server JDBC driver so

that KNIME Hub will impersonate workflow users on JDBC connections. For further details

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 84

https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf

about using Kerberos integrated authentication with Microsoft SQL Server see the Microsoft

SQL Server documentation.

Activate the user impersonation for the embedded Microsoft SQL Server driver, by adding the

following line to the KNIME Hub preferences file.

/instance/org.knime.database/drivers/built-in-mssqlserver-
9.4.0/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connect
ion.jdbc.properties/gsscredential/type=DELEGATED_GSS_CREDENTIAL

In the Microsoft SQL Server Connector ensure that you have selected Kerberos in the

Authentication setting in the configuration window and added the following two parameters

to the JDBC Parameters tab:

authenticationScheme=JavaKerberos
integratedSecurity=true

These parameters can be set automatically as Default JDBC Parameters via the KNIME Hub

preferences file by adding the following lines:

/instance/org.knime.database/drivers/built-in-mssqlserver-
9.4.0/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connect
ion.jdbc.properties/authenticationScheme/type=literal
/instance/org.knime.database/drivers/built-in-mssqlserver-
9.4.0/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connect
ion.jdbc.properties/authenticationScheme/value=JavaKerberos

/instance/org.knime.database/drivers/built-in-mssqlserver-
9.4.0/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connect
ion.jdbc.properties/integratedSecurity/type=literal
/instance/org.knime.database/drivers/built-in-mssqlserver-
9.4.0/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connect
ion.jdbc.properties/integratedSecurity/value=true

If you want to use your own driver you must exchange the built-in driver id (built-

in-mssqlserver-9.4.0) with the ID of your driver. For further information on how

to setup your own driver see the JDBC drivers on KNIME Hub and KNIME Server

section.

For further details about the parameters that are used for constrained delegation see the

Microsoft SQL Server documentation.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 85

https://docs.microsoft.com/en-us/sql/connect/jdbc/using-kerberos-integrated-authentication-to-connect-to-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/using-kerberos-integrated-authentication-to-connect-to-sql-server?view=sql-server-ver15
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file
https://kni.me/n/lbG8X3On6ol70XyD
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file
https://docs.microsoft.com/en-us/sql/connect/jdbc/using-kerberos-integrated-authentication-to-connect-to-sql-server?view=sql-server-ver15#constrained-delegation

Example: Oracle Database

Connections to Oracle Database require further setup steps. In this example we will show

how to:

1. Register the Oracle Database driver provided by Oracle on KNIME Hub.

2. Configure user impersonation on KNIME Hub which is recommended for Kerberos

authentication.

Oracle Database driver installation

The Oracle Database JDBC driver requires some special licensing that you need to agree to.

That is why KNIME provides an additional plug-in to install the driver. In order to install the

plug-in follow the steps as described in the Third-party Database Driver Plug-in section.

Constrained delegation on Oracle Database

If you use Kerberos based authentication for Oracle Database, we recommend to also setup

constrained delegation.

Activate the Kerberos constrained delegation for the installed Oracle driver by adding the

following lines to the KNIME Hub preferences file (e.g. oracle.epf).

/instance/org.knime.database/drivers/built-in-oracle-
19.14.0/attributes/additional/java.lang.String/knime.db.connection.kerberos_delegation.s
ervice/value=oracle

If you want to use your own driver you must exchange the built-in driver id (built-

in-oracle-19.14.0) with the ID of your driver. For further information on how to

setup your own driver see the JDBC drivers on KNIME Hub and KNIME Server

section.

The service name itself is not used so any non-empty string will enable constrained

delegation.

Example: PostgreSQL

If you use Kerberos based authentication for PostgreSQL, we recommend to also setup

constrained delegation.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 86

https://docs.knime.com/2024-06/bigdata_secured_cluster_connection_guide/index.pdf
https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file

Activate the Kerberos constrained delegation for the embedded PostgreSQL driver by adding

the following line to the KNIME Hub preferences file.

/instance/org.knime.database/drivers/built-in-postgres-
42.3.5/attributes/additional/java.lang.String/knime.db.connection.kerberos_delegation.se
rvice/value=postgres

The default service name for PostgreSQL is postgres, but it might be different depending on

your database setup. In that case, you need to change postgres in the above-mentioned line

to the service name.

By default the PostgreSQL driver uses the operation system user as user during login when

using Kerberos authentication which will cause problems when the workflow is executed on

the KNIME Hub. Depending on your database setup you either want to set it to the Kerberos

principal name with or without REALM or the context.workflow.username depending on your

database setup.

To set the user name to the principal name including the REALM e.g. User@REALM.COM use

the following line:

/instance/org.knime.database/drivers/built-in-postgres-
42.3.5/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connec
tion.jdbc.properties/user/type=GSS_PRINCIPAL_NAME

To use the principal name without the REALM use this line instead:

/instance/org.knime.database/drivers/built-in-postgres-
42.3.5/attributes/additional/org.knime.database.util.DerivableProperties/knime.db.connec
tion.jdbc.properties/user/type=GSS_PRINCIPAL_NAME_WITHOUT_REALM

If you want to use your own driver you must exchange the built-in driver id (built-

in-postgres-42.3.5) with the ID of your driver. For further information on how to

setup your own driver see the JDBC drivers on KNIME Hub and KNIME Server

section.

KNIME Database Extension Guide

© 2024 KNIME AG. All rights reserved. 87

https://docs.knime.com/2024-06/server_admin_guide/index.pdf#preferences-file

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Database Extension Guide
	Table of Contents
	Introduction
	Port Types

	Connecting to a database
	Connecting to predefined databases
	Connecting to other databases
	Register your own JDBC drivers
	Advanced Database Options
	Examples

	Reading from a database
	Database Metadata Browser

	Query Generation
	Visual Query Generation
	Advanced Query Building

	Database Structure Manipulation
	DB Table Remover
	DB Table Creator

	DB Manipulation
	DB Delete
	DB Writer
	DB Insert
	DB Update
	DB Merge
	DB Loader
	DB Transaction Nodes

	Type Mapping
	DB Type Mapper

	Migration
	Workflow Migration Tool
	Node Name Mapping
	Register your own JDBC drivers for the deprecated database framework

	Business Hub / Server Setup
	JDBC drivers on KNIME Hub and KNIME Server
	Default JDBC Parameters
	Reserved JDBC Parameters
	Connection Initialization Statement
	Kerberos Constrained Delegation
	Example: Apache Hive™
	Example: Apache Impala™
	Example: Microsoft SQL Server
	Example: Oracle Database
	Example: PostgreSQL

