
KNIME Python Integration Guide
KNIME AG, Zurich, Switzerland

Version 5.3 (last updated on 2024-09-11)

Table of Contents

Introduction. 1

Using the Python nodes. 2

Introduction . 2

Configuration . 2

AI assisted code generation. 4

Examples of usage . 5

Features of the Python View node. 8

Load Jupyter notebooks from KNIME. 9

Configure the Python Environment (Advanced) . 10

Prerequisites . 11

Configure the AP-wide environment . 12

Configure node-specific environments. 15

Executor configuration . 21

Troubleshooting . 23

Find debug information . 23

What to do in case of the error "No module named knime.scripting" 24

Windows-specific issues . 24

Data type not supported . 24

SSL error during execution. 25

Introduction

This guide describes how to set up and use the KNIME Python Integration in KNIME Analytics

Platform with its two nodes: Python Script node and Python View node.

In the v4.5 release of KNIME Analytics Platform, we introduced the Python Script (Labs) node,

which is since the v4.7 release the current Python Script node of this guide.

The KNIME Python Integration works with Python versions 3.9 to 3.11 and comes with a

bundled Python environment to let you start right away. This convenience allows to use the

nodes without installing, configuring or even knowing environments. The included bundled

Python environment comes with these packages.

To start right away, drag and drop the extension KNIME Python Integration from

the KNIME Hub into the workbench to install it or manually via File → Install

KNIME Extensions…. Then proceed to Using the Python nodes.

The section Using the Python nodes explains how the configuration of the dialogs can be

used, as well as how to work with data coming to and going out of the nodes, how to work

with batches and how to use the Python Script node with scripts of older Python nodes. It

also provides the use-case of using Jupyter notebooks and references further examples.

If you need packages, that are not included in the bundled environment, you need to set up

your own environment. In the section Configure the Python Environment the different options

to set up and change environments are explored.

 The API of the Python Integration can be found at Read The Docs.

Before the v4.7 release, this extension was in labs and the KNIME Python

Integration (legacy) was the current Python Integration. For anything related to

the legacy nodes of the former KNIME Python Integration, please refer to the

Python Integration guide of KNIME Analytics Platform v4.6. The advantages of

the current Python Script node and the Python View node compared to legacy

nodes are significantly improved performance and data transfer between

Python processes and the KNIME Analytics Platform thanks to Apache Arrow, a

bundled environment to start right away, a unified API via the knime.scripting.io

module, conversion support to and from both Pandas DataFrames and PyArrow

Tables, support for arbitrarily large data sets by using batches. If you look for

Python 2 support, you will also need to use the KNIME Python Integration

(legacy).

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 1

https://www.knime.com/whats-new-in-knime-45#python-in-knime
https://www.knime.com/whats-new-in-knime-analytics-platform-47
https://kni.me/e/xZE5dJbnuaKIpeyR
https://kni.me/e/xZE5dJbnuaKIpeyR
https://kni.me/e/xZE5dJbnuaKIpeyR
https://kni.me/e/xZE5dJbnuaKIpeyR
https://knime-python.readthedocs.io/en/stable/#knime-python-script-labs-api
https://docs.knime.com/2022-06/python_installation_guide/index.html
https://docs.knime.com/2022-06/python_installation_guide/index.html
https://docs.knime.com/2022-06/python_installation_guide/index.html
https://arrow.apache.org/

To achieve biggest possible performance gains, we recommend configuring

your workflows to use Columnar Backend. Right-click a workflow in KNIME

Explorer, select Configure…, then choose the Columnar Backend option under

Selected Table Backend. Additional information about table backends can be

found here.

Using the Python nodes

Introduction

This chapter guides through the configuration of the script dialog and the amount of ports,

followed by examples of usage. These examples cover the access of input data, followed by

table conversion and the usage of batches for data larger than RAM. Then it will explain how

to port scripts from Python legacy nodes to this extension. After that, the additional features

of the Python View node are explained. The chapter concludes with the use-case of loading

and accessing Jupyter notebooks.

 See the KNIME Hub for examples on using the Python nodes.

Configuration

The Python Script node and the Python View node contain several panels in the configuration

dialog.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 2

https://hub.knime.com/knime/extensions/org.knime.features.core.columnar/latest
https://docs.knime.com/2024-06/analytics_platform_user_guide/index.pdf#table-backend
https://kni.me/s/1_0f6fdjqeLPCfPY

• Script Editor

Your primary area for code development is the Script Editor. It comes with the

convenience of auto-completion to expedite your coding process. Additionally, hovering

over functions or methods reveals tooltips, providing usage guidance.

• Inputs/Outputs (Left Panel)

Displayed here are the input and output variables accessible to your node. You can

easily incorporate these into your script by dragging them from the panel into the Script

Editor.

• Ask K-AI

Tap into AI for code assistance. Input a prompt in the "Ask K-AI" box, and our AI model

will suggest code relevant to your prompt. Inspect the generated code and, if it meets

your requirements, integrate it into your script.

• Execution Controls ("Run all", "Run selected lines")

The "Run all" button allows for the execution of your entire script in a new Python

process, which remains accessible post-execution. To run a specific segment of your

code, select the desired lines and click "Run selected lines," executing them in the

active Python process.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 3

• Temporary Values

Post-execution, this panel lists the local variables defined in your script. It’s not just for

show; you can interact with these variables by clicking on them, prompting their values

to be printed in the console. This interactive feature is particularly useful for quick

variable inspections and debugging.

• Console

The console displays the real-time standard output from your Python session, including

print statements and other script outputs. To start afresh or declutter the console, use

the trash icon button situated at the top right.

• Execution Status

This section provides feedback on the script’s execution process. It indicates the status

of the last script run, allowing you to confirm that the script has executed as intended

or to identify if there are any actions needed to address script issues.

• Output Preview

The Output Preview panel is only visible in the dialog of the "Python View" node and

shows the output view after script execution. This interactive preview is updated on the

fly whenever the output view is update by the interactive Python session.

AI assisted code generation

The "Ask K-AI" feature within the KNIME Python Scripting Node is an advanced AI-assisted

code generation tool. When activated, you can input prompts specifying the intended

functionality of the code. The AI assistant has contextual awareness of the KNIME Python

API, the input data’s structure, and the current script content in the editor.

Once the assistant generates the code, it is presented to you in a diff-editor format, which

highlights the differences between your current code and the new suggestion. You then have

the option to review these suggestions and choose whether to accept them into your script

or discard them, providing a high degree of control over the changes made to your code.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 4

Upon utilizing this service, be aware that the current code from the editor, the

input data’s schema, and the prompt are sent over the internet to the

configured KNIME Hub and OpenAI, which is a consideration for data privacy.

This transmission is necessary for the AI to tailor code suggestions accurately

to your script’s context and the data you are working with.

Examples of usage

When you create a new instance of the Python Script nodes, the code editor will already

contain starter code, in which we import knime.scripting.io as knio. The content shown

in the input, output, and flow variable panes can be accessed via this knime.scripting.io

module.

The knime.scripting.io module is always available when using the "Python

Script" node. It does not have to be installed manually but is added to the

"PYTHONPATH" automatically.

If the package knime is installed via pip in the environment used for the Python

script node, accessing the knime.scripting.io module will fail with the error No

module named 'knime.scripting'; 'knime' is not a package. In that case,

run pip uninstall knime in your Python environment.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 5

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

Accessing data

With import knime.scripting.io as knio, the input and output tables and objects can be

accessed from respective Python lists:

• knio.input_tables[i] and knio.output_tables[i],

• knio.input_objects[i] and knio.output_objects[i],

• knio.output_images[i] to output images, which must be either a string describing an

SVG image or a byte array encoding a PNG image,

where i is the index of the corresponding table/object/image (0 for the first

input/output port, 1 for the second input/output port, and so on).

Flow variables can be accessed from the dictionary:

• knio.flow_variables['name_of_flow_variable'].

Converting tables to and from Pandas DataFrames and PyArrow Tables

The knime.scripting.io module provides a simple way of accessing the input data as a

Pandas DataFrame or PyArrow Table. This can prove quite useful since the two data

representations and corresponding libraries provide a different set of tools that might be

applicable to different use-cases.

• Converting tables to and from a Pandas DataFrame:

df = knio.input_tables[0].to_pandas()

knio.output_tables[0] = knio.Table.from_pandas(df)

• Converting tables to and from a PyArrow Table:

table = knio.input_tables[0].to_pyarrow()

knio.output_tables[0] = knio.Table.from_pyarrow(table)

Working with batches

The Python nodes, together with the knime.scripting.io module, allow efficiently

processing larger-than-RAM data tables by using batching.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 6

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html

1. First, you need to initialise an instance of a table to which the batches will be written

after being processed:

processed_table = knio.BatchOutputTable.create()

2. Calling the batches() method on an input table returns an iterable, items of which are

batches of the input table that can be accessed via a for loop:

processed_table = knio.BatchOutputTable.create()
for batch in knio.input_tables[0].batches():

3. Inside the for loop, the batch can be converted to a Pandas DataFrame or a PyArrow

Table using the methods to_pandas() and to_pyarrow() mentioned above:

processed_table = knio.BatchOutputTable.create()
for batch in knio.input_tables[0].batches():
 input_batch = batch.to_pandas()

4. At the end of each iteration of the loop, the batch should be appended to the

processed_table:

processed_table = knio.BatchOutputTable.create()
for batch in knio.input_tables[0].batches():
 input_batch = batch.to_pandas()
 # process the batch
 processed_table.append(input_batch)

The Templates section provides starter code for the use-cases described

above.

Porting Scripts from the Python Script (Legacy) Nodes

Adapting your Python scripts from Python Script (Legacy) nodes to work with the current

Python nodes is as easy as adding the following to your code:

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 7

import knime.scripting.io as knio
input_table_1 = knio.input_tables[0].to_pandas()

the script from the legacy nodes goes here

knio.output_tables[0] = knio.Table.from_pandas(output_table_1)

Note that the numbering of inputs and outputs in the Python nodes is 0-based -

keep that in mind when porting your scripts from the other Python nodes, which

have a 1-based numbering scheme (e.g. knio.input_tables[0] in the Python

nodes corresponds to input_table_1 in the legacy Python nodes).

Features of the Python View node

The Python View node can be used to create views using Python scripts. It has the same

configurable input ports as the Python Script node and uses the same API to access the

input data. However, the Python View node has no output ports except for one optional

image output port.

To create a view the script must populate the variable knio.output_view with a return value

of one of the knio.view* functions. It is possible to create views from all kinds of displayable

objects via the convenience method knio.view, which tries to detect the correct format and

calls the matching method of the following list of knio.view* functions (see API for more

details):

• knio.view calls the appropriate of the following functions

• knio.view_html creates a view from a string of html content

• knio.view_svg creates a view from a string of svg content

• knio.view_png creates a view from bytes representing a png

• knio.view_jpeg creates a view from bytes representing a jpeg

• knio.view_matplotlib creates a view from the active or given matplotlib figure

• knio.view_seaborn creates a view from the active or given seaborn figure

• knio.view_plotly creates a view from a plotly figure; note that to be able to

synchronize the selection between the view and other KNIME views, the custom_data of

the figure traces must be set to the RowID

Example:

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 8

https://knime-python.readthedocs.io/en/stable/#views

fig = px.scatter(df, x="my_x_col", y="my_y_col", color="my_label_col",
 custom_data=[df.index]) # custom_data is set to the RowID
node_view = view_plotly(fig)

• knio.view_ipy_repr creates a view from an object with an IPython _repr_*_ function

 The templates of the Python View node provide examples.

To create an output image, the optional output image port needs to be added.

The output image port is populated automatically if the view is an SVG, PNG, or JPEG image

or can be converted to one. Matplotlib and seaborn figures will be converted to a PNG or SVG

image depending on the format chosen in view_matplotlib`. Plotly figures can only be

converted to images if the package kaleido is installed in the environment. Objects that have

an IPython repr_svg, repr_png, or repr_jpeg function will be converted by calling the first of

these functions available. HTML documents cannot be converted to images automatically.

However, it is possible to set an image representation or a function that returns an image

representation when calling view_html (see the API).

Otherwise, the script must populate the variable knio.output_images[0] like in the Python

Script node.

Load Jupyter notebooks from KNIME

Existing Jupyter notebooks can be accessed within Python Scripting nodes if we import

knime.scripting.jupyter as knupyter. Notebooks can be opened via the function

knupyter.load_notebook, which returns a standard Python module. The load_notebook

function needs the path to the folder that contains the notebook file and the filename of the

notebook as arguments. After a notebook has been loaded, you can call functions that are

defined in the code cells of the notebook like any other function of a Python module.

Furthermore, you can print the textual content of each cell of a Jupyter notebook using the

function knupyter.print_notebook. It takes the same arguments as the load_notebook

function.

An example script for a Python Script node loading a notebook could look like this:

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 9

https://knime-python.readthedocs.io/en/stable/#views

Path to the folder containing the notebook, e.g. the folder 'data' contained
in my workflow folder
notebook_directory = "knime://knime.workflow/data/"

Filename of the notebook
notebook_name = "sum_table.ipynb"

Load the notebook as a Python module
import knime.scripting.jupyter as knupyter
my_notebook = knupyter.load_notebook(notebook_directory, notebook_name)

Print its textual contents
knupyter.print_notebook(notebook_directory, notebook_name)

Call a function 'sum_each_row' defined in the notebook
output_table = my_notebook.sum_each_row(input_table)

The load_notebook and print_notebook functions have two optional arguments:

• notebook_version: The Jupyter notebook format major version. Sometimes the version

cannot be read from a notebook file. In these cases, this option allows to specify the

expected version in order to avoid compatibility issue and should be an integer.

• only_include_tag: Only load cells that are annotated with the given custom cell tag

(since Jupyter 5.0.0). This is useful to mark cells that are intended to be used in a

Python module. All other cells are excluded. This is e.g. helpful to exclude cells that do

visualization or contain demo code and should be a string.

The Jupyter notebook support for the KNIME Python Integration depends on

the packages IPython, nbformat, and scipy, which are already included in the

bundled environment and in the metapackage knime-python-scripting.

You can find example workflows using the knime.scripting.jupyter Python

module on the KNIME Hub.

Configure the Python Environment (Advanced)

The KNIME Python Integration requires a configured Python environment. In this section we

describe how to install the Python integration and how to configure its Python environment.

This section is only relevant you want to use anything different than the bundled

pre-installed environment.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 10

https://kni.me/s/1_0f6fdjqeLPCfPY

Besides the prerequisites, we explain possibilities for two different scopes: for the whole

KNIME Analytics Platform and node-specific. The latter is handy when sharing your workflow.

Lastly, the configuration for the KNIME Executor (which is used in the KNIME Business Hub)

is explained in configuration example.

Prerequisites

1. Install the Python extension. Drag and drop the extension from the KNIME Hub into the

workbench to install it. Or got to File → Install KNIME Extensions in KNIME Analytics

Platform and install the KNIME Python Integration in the category KNIME & Extensions.

2. Install Conda, a package and environment manager. For instance, Miniconda, which is a

minimal installation of Conda. Its initial environment, base, will contain a Python

installation, but we recommend to create new environments for your specific use-

cases. In the KNIME Analytics Platform Preferences, configure the Path to the Conda

installation directory under KNIME > Conda, as shown in the following figure.

You will need to provide the path to the folder containing your installation of Conda. For

Miniconda, the default installation path is

◦ for Windows: C:\Users\<your-username>\miniconda3\

◦ for Mac: /Users/<your-username>/miniconda3

◦ for Linux: /home/<your-username>/miniconda3

Once you have entered a valid path, the installed Conda version will be displayed.

We will cover further down here how to use environments without

Conda.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 11

https://kni.me/e/xZE5dJbnuaKIpeyR
https://docs.conda.io/en/latest/miniconda.html

Configure the AP-wide environment

Bundled (recommended to start right away)

The KNIME Python Integration is installed with a bundled Python environment, consisting of a

specific set of Python packages (i.e. Python libraries) to start right away: just open the

Python Script node and start scripting.

As not everybody needs everything, this set is quite limited to allow for many scripting

scenarios while keeping the bundled environment small. Thus, the list of included packages

can be found in the contents of this metapackage and in the following list (with some

additional dependencies):

Required # Current version in the bundled environment (December 2023)
- beautifulsoup4 # 4.12.2
- cloudpickle # 3.0.0
- ipython # 8.18.1
- matplotlib-base # 3.8.2
- markdown # 3.5.1
- nbformat # 5.9.2
- nltk # 3.8.1
- nomkl # 1.0
- numpy # 1.26.2
- openpyxl # 3.1.2
- pandas # 2.0.3
- pillow # 10.1.0
- plotly # 5.18.0
- py4j # 0.10.9.7
- pyarrow # 14.0.1
- python # 3.11
- python-dateutil # 2.8
- pytz # 2023.3.0
- pyyaml # 6.0.1
- requests # 2.31.0
- scikit-learn # 1.3.2
- scipy # 1.11.4
- seaborn # 0.13.0
- statsmodels # 0.14.0

The bundled environment is selected by default and can be reselected here:

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 12

https://anaconda.org/knime/knime-python-scripting

Metapackages via terminal (recommended if additional packages are
required)

If you want a Python environment with more than the packages provided by the bundled

environment, you can create your environment using our metapackages. Two metapackages

are important: knime-python-base contains the basic packages which are always needed.

knime-python-scripting contains knime-python-base and installs additionally the packages

used in the Python Script node. This is the set of packages which is also used in the bundled

environment. Find the lists here. You can choose between different Python version (currently

3.9 to 3.11) and select the current KNIME Analytics Platform version. See the KNIME conda

channel for available versions.

Create a new environment in a terminal by adjusting and entering

conda create --name my_python_env -c knime -c conda-forge knime-python-scripting=5.3
python=3.11 other_package other_package_with_version_specified=1.2.3

Install additional packages into your existing environment my_python_env in the terminal by

adjusting and entering

conda install --name my_python_env -c conda-forge <package>

Further information on how to manage Conda packages can be found here.

Do not install the package knime using pip into the environment that shall be

used inside KNIME, as that will conflict with the KNIME Python Scripting API

and make importing knime.scripting.io fail.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 13

img/metapackages.txt
https://anaconda.org/knime/knime-python-scripting/files
https://anaconda.org/knime/knime-python-scripting/files
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

Manually specifying the Python executable/start script via the preference page

The alternative to using the Conda package manager is to manually set up the Python

installation. If you choose Manual in the Preference page, you will have the following options:

1. Point KNIME Analytics Platform to a Python executable of your choice

2. Point KNIME Analytics Platform to a start script which activates the environment you

want to use for Python 3. This option assumes that you have created a suitable Python

environment earlier with a Python virtual environment manager of your choice. In order

to use the created environment, you need to create a start script (shell script on Linux

and Mac, batch file on Windows). The script has to meet the following requirements:

◦ It has to start Python with the arguments given to the script (please make sure

that spaces are properly escaped)

◦ It has to output standard and error out of the started Python instance

◦ It must not output anything else.

Here we provide an example shell script for the Python environment on Linux and Mac.

Please note that on Linux and Mac you additionally need to make the file executable

(i.e. chmod gou+x py3.sh).

#! /bin/bash
Start by making sure that the anaconda folder is on the PATH
so that the source activate command works.
This isn't necessary if you already know that
the anaconda bin dir is on the PATH
export PATH="<PATH_WHERE_YOU_INSTALLED_ANACONDA>/bin:$PATH"

conda activate <ENVIRONMENT_NAME>
python "$@" 1>&1 2>&2

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 14

On Windows, the script looks like this:

@REM Adapt the folder in the PATH to your system
@SET PATH=<PATH_WHERE_YOU_INSTALLED_ANACONDA>\Scripts;%PATH%
@CALL activate <ENVIRONMENT_NAME> || ECHO Activating python environment failed
@python %*

These are example scripts for Conda. You may need to adapt them for

other tools by replacing the Conda-specific parts. For instance, you will

need to edit them in order to point to the location of your environment

manager installation and to activate the correct environment.

After creating the start script, you will need to point to it by specifying the path to the

script on the Python Preferences page.

Configure node-specific environments

Conda Environment Propagation node

Besides setting up Python for your entire KNIME workspace via the Preferences page, you

can also use the Conda Environment Propagation node to configure custom Python

environments and then propagate them to downstream Python nodes. This node also allows

you to bundle these environments together with your workflows, making it easy for others to

replicate the exact same environment that the workflow is meant to be executed in. This

makes workflows containing Python nodes significantly more portable and less error-prone.

Setting up

To be able to make use of the Conda Environment Propagation node, you need to follow

these steps:

1. On your local machine, you should have Conda set up and configured in the

Preferences of the KNIME Python Integration as described in the Prerequisites section

2. Open the node configuration dialog and select the Conda environment you want to

propagate and the packages to include in the environment in case it will be recreated

on a different machine. The packages can be selected automatically via the following

buttons:

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 15

https://hub.knime.com/knime/extensions/org.knime.features.conda/latest/org.knime.conda.nodes.envprop.CondaEnvironmentPropagationNodeFactory/

The Include only explicitly installed button selects only those packages that were

explicitly installed into the environment by the user. This can help avoiding conflicts

when using the workflow on different Operating Systems because it allows Conda to

resolve the dependencies of those package for the Operating System the workflow is

running on.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 16

3. The Conda Environment Propagation node outputs a flow variable which contains the

necessary information about the Python environment (i.e. the name of the environment

and the respective installed packages and versions). The flow variable has

conda.environment as the default name, but you can specify a custom name. This way

you can avoid name collisions that may occur when employing multiple Conda

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 17

Environment Propagation nodes in a single workflow.

In order for any Python node in the workflow to use the environment you just created, you

need to:

1. Connect the flow variable output port of Conda Environment Propagation node to the

input flow variable port of a Python node

run a python script

Conda Environment
Propagation Python Script

run a python script

Conda Environment
Propagation Python Script

Please note that, since flow variables are propagated also through

connections that are not flow variable connections, the flow variable

propagating the Conda environment you created with the Conda

Environment Propagation node will also be available for all downstream

nodes.

2. Successively open the configuration dialog of the Python nodes in the workflow that

you want to make portable. Open the "Set Python environment" settings page via the

kebab menu at the top right, and select which Conda flow variable you want to use.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 18

Exporting

Once you configured the Conda Environment Propagation node and set up the desired

workflow, you might want to run this workflow on a target machine, for example a KNIME

Server instance.

1. Deploy the workflow by uploading it to the KNIME Server, sharing it via the KNIME Hub,

or exporting it. Make sure that the Conda Environment Propagation node is reset before

or during the deployment process.

2. On the target machine, Conda must also be set up and configured in the Preferences of

the KNIME Python Integration. If the target machine runs a KNIME Server, you may need

to contact your server administrator or refer to the Server Administration Guide in order

to do this.

3. During execution (on either machine), the node will check whether a local Conda

environment exists that matches its configured environment. When configuring the

node, you can choose which modality will be used for the Conda environment validation

on the target machine. Check name only will only check for the existence of an

environment with the same name as the original one, Check name and packages will

check both name and requested packages, while Always overwrite existing environment

will disregard the existence of an equal environment on the target machine and will

recreate it.

Depending on the above configuration, the execution time of the node will

vary. For instance, a simple Conda environment name check will be much

faster than a name and package check, which, in turn, will be faster than a

full environment recreation process.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 19

https://docs.knime.com/2024-06/server_admin_guide/index.pdf

Exporting Python environments between systems that run different Operating

Systems might cause some libraries to conflict. Please test your workflows on

different Operating Systems and consider using the Include only explicitly

installed button.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 20

Manually specifying the Python executable/start script via flow variable

In case you do not want to use the Conda Environment Propagation node’s functionality, you

can also configure individual nodes manually to use specific Python environments. This is

done via the flow variable python3_command that each Python scripting node offers under the

Flow Variables tab in its configuration dialog. The variable accepts the path to a Python start

script like in the Manual case described above.

Executor configuration

The KNIME Executor uses customization profiles, you can adapt the following parts for your

convenience.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 21

https://docs.knime.com/2024-06/business_hub_user_guide/index.pdf#hub_customization_profiles

A - KNIME Conda Integration - Path to Anaconda/miniconda installation directory
/instance/org.knime.conda/condaDirectoryPath=<path to conda installation dir>

B - KNIME Python Integration - Default options for Python Integration. By default
KNIME uses the bundled environment (shipped with KNIME) if no Conda Environment
Propagation node is used.
Line below can be set to either "bundled" (default), "conda" or "manual"
/instance/org.knime.python3.scripting.nodes/pythonEnvironmentType=bundled
/instance/org.knime.python3.scripting.nodes/bundledCondaEnvPath=org_knime_pythonscriptin
g
Following rows are only required if "bundled" value above is replaced with "conda"
/instance/org.knime.python3.scripting.nodes/python2CondaEnvironmentDirectoryPath=<path
to default conda environment dir>
/instance/org.knime.python3.scripting.nodes/python3CondaEnvironmentDirectoryPath=<path
to default conda environment dir>
Following rows are only required if "bundled" value above is replaced with "manual"
/instance/org.knime.python3.scripting.nodes/python2Path=<path to python2 env>
/instance/org.knime.python3.scripting.nodes/python3Path=<path to python3 env>

C - KNIME Python Integration (Legacy) - Default options for Python Integration.
Line below can be set to either "conda" or "manual"
/instance/org.knime.python2/pythonEnvironmentType=conda
/instance/org.knime.python2/defaultPythonOption=python3
/instance/org.knime.python2/serializerId=org.knime.python2.serde.arrow
Following rows are only required if "conda" is set above
/instance/org.knime.python2/python2CondaEnvironmentDirectoryPath=<path to default conda
environment dir>
/instance/org.knime.python2/python3CondaEnvironmentDirectoryPath=<path to default conda
environment dir>
Following rows are only required if "conda" value above is replaced with "manual"
/instance/org.knime.python2/python2Path=<path to python2 env>
/instance/org.knime.python2/python3Path=<path to python3 env>

D - KNIME Deep Learning Integration
Select either "python" or "dl" (without quotation marks) in next row. If "python" is
used, the configuration of section B above is reused. If "dl" is used, a custom config
for Deep Learning can be provided.
/instance/org.knime.dl.python/pythonConfigSelection=python
Following rows only required if row above is set to "dl"
/instance/org.knime.dl.python/kerasCondaEnvironmentDirectoryPath=<path to default conda
environment dir>
/instance/org.knime.dl.python/librarySelection=keras
/instance/org.knime.dl.python/manualConfig=python3
/instance/org.knime.dl.python/pythonEnvironmentType=conda
/instance/org.knime.dl.python/serializerId=org.knime.python2.serde.arrow
/instance/org.knime.dl.python/tf2CondaEnvironmentDirectoryPath=<path to default conda
environment dir>
/instance/org.knime.dl.python/tf2ManualConfig=python3

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 22

Troubleshooting

In case you run into issues with KNIME’s Python integration, here are some useful tips to help

you gather more information and maybe even resolve the issue yourself. In case the issues

persist and you ask for help, please include the gathered information.

Find debug information

Resourceful information helps in understanding issues. Relevant information can be obtained

in the following ways.

Accessing the KNIME Log

The knime.log contains information logged during the execution of nodes. To obtain it, there

are two ways:

• In the KNIME Analytics Platform: View → Open KNIME log

• In the file explorer: <path-to-knime-workspace>/.metadata/knime/knime.log

Not all logged information is required. Please restrict the information you provide to the

issue. If the log file does not contain sufficient information, you can change the logging

verbosity in File → Preferences → KNIME. You can even log the information to the console

in the KNIME Analytics Program: File → Preferences → KNIME → KNIME GUI.

Information about the Python environment

If conda is used, obtain the information about the used Python environment <python_env> via:

1. conda activate <python_env>

2. conda env export

Information about a failed installation

If the error An error occured while installing the items appears when installing an

extension with a bundled Python environment (the KNIME Python Integration itself and pure

Python extensions), you can obtain the corresponding log files as follows. The error message

contains a <plugin_name> like org.knime.pythonscripting.channel.v1.bin… or

sdl.harvard.geospatial.channel.bin…

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 23

1. Windows/Linux: go to the folder of the KNIME Analytics Platform installation

macOS: Rightclick on the KNIME Analytics Platform installation and Show Package

Contents, open the folder Eclipse

2. plugins → <plugin_name> → bin

3. The log files are create_env.err and create_env.out

What to do in case of the error "No module named knime.scripting"

If you see the error

ModuleNotFoundError: No module named 'knime.scripting'; 'knime' is not a package`

you probably have the package knime installed via pip in the environment used for the Python

script node. This currently does not work due to a name clash. You can remove knime in the

respective Python environment by executing the command pip uninstall knime in your

terminal.

It can show multiple packages like the following. You can remove both.

…\envs\py3_knime\lib\site-packages\knime-0.11.6.dist-info*
…\envs\py3_knime\lib\site-packages\knime.py

Windows-specific issues

• Installation fails - potential issue: the installation folder of the KNIME Analytics Platform

has a long path. Windows' long path limitations can be circumvented by enabling long

path support as outlined here: https://docs.microsoft.com/en-us/windows/win32/

fileio/maximum-file-path-limitation?tabs=registry

Data type not supported

If you get an error as follows, you can change the data type via df["count"] =

pd.to_numeric(df["count"]) or have a look in this troubleshoot section.

ValueError: Data type 'uint32' in column 'count' is not supported in KNIME Python.
Please use a different data type.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 24

https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry
https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=registry
https://docs.knime.com/latest/pure_python_node_extensions_guide/#want-int-but-get-long

SSL error during execution

If you encounter an SSL error during the execution of a Python scripting node, this might be

due to the use of a self-signed certificate. If other nodes such as the GET Request node work,

but the Python Script node does not, you can configure the Python Script nodes to trust the

same certificates as the KNIME Analytics Platform. To do this, add the following line to your

knime.ini file:

-Dknime.python.cacerts=AP

This will point the CA_CERTS and REQUESTS_CA_BUNDLE environment variables to a newly

created CA bundle that contains the certicate authorities that the KNIME Analytics Platform

trusts. The Python Script node will then trust the same certificates as the KNIME Analytics

Platform.

KNIME Python Integration Guide

© 2024 KNIME AG. All rights reserved. 25

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Python Integration Guide
	Table of Contents
	Introduction
	Using the Python nodes
	Introduction
	Configuration
	AI assisted code generation
	Examples of usage
	Features of the Python View node
	Load Jupyter notebooks from KNIME

	Configure the Python Environment (Advanced)
	Prerequisites
	Configure the AP-wide environment
	Configure node-specific environments
	Executor configuration

	Troubleshooting
	Find debug information
	What to do in case of the error "No module named knime.scripting"
	Windows-specific issues
	Data type not supported
	SSL error during execution

