
KNIME Expressions Guide
KNIME AG, Zurich, Switzerland

Version 5.4 (last updated on)

Table of Contents

Introduction. 1

Expression nodes . 1

General Behaviour . 1

Expression node . 2

Expression Row Filter node . 3

Variable Expression node . 4

Expression Language. 5

Value types and literals. 6

Input data access . 11

Operators . 13

Functions . 19

Constants . 21

Introduction

In this guide you will find documentation about:

• The Expression nodes: Learn how to perform versatile data manipulation in KNIME

workflows using the KNIME Expression Language.

• The KNIME Expression Language: Find guidance for the syntax, semantics, and usage

of the KNIME Expression Language.

Expression nodes

There are currently three nodes available in KNIME Analytics Platform that allow you to use

the KNIME Expression Language to manipulate your data within KNIME workflows:

• Expression: Enables row-by-row data manipulation to add or replace columns.

• Expression Row Filter: Filters rows based on a condition.

• Variable Expression: Allows you to create or modify flow variables.

Simply drag and drop one of the nodes from the node repository and connect it.

General Behaviour

You can use the KNIME Expression nodes to perform manipulation of your data. The nodes

use the KNIME Expression Language that you can find explained in the next section.

You can write your expression in the expression editor, using the input data available from

the input panel which can be found on the left side. On the right side you can find the catalog

of all the available functions with documentation about their usage. You can filter them and

also expand or collapse the available categories.

Most Expression nodes support multiple expressions that will be evaluated in sequence. You

can add a new expression by clicking the Add expression button. Each single expression

editor has a control bar in the top-right corner that allows you to move the expression up or

down, duplicate it, or delete it.

Every expression editor has an output section attached below it that allows to configure the

settings of the output. Editors will be evaluated from the top to the bottom, so you can use

the result of one editor in the next one.

There is a button to evaluate the expression and generate a preview of the result. This is

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 1

https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.row.mapper.ExpressionRowMapperNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.row.filter.ExpressionRowFilterNodeFactory/
https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.variable.ExpressionFlowVariableNodeFactory/

useful to check if the expression is correct and to see the result of the manipulation.

Additionally, the node integrates with the KNIME AI Assistant extension, which offers AI-

assisted expression generation and modification, further simplifying the process. By asking

K-AI for assistance, you can receive suggestions for expressions based on the column

names and column types in your table.

 Even with K-AI enabled, no data from the table is sent to the AI service.

Expression node

You can use the Expression node to perform row-by-row manipulation of your data and add

or replace column data.

Open the node configuration dialog and you will see something like the following:

Figure 1. KNIME Expression node overview

In the Output column section at the bottom of each expression editor you can choose if you

want to output the result of the expression in a new column and give the column a desired

name or replace the existing column.


Find an example on how to use the expression node on KNIME Community

Hub.

You can click the Evaluate first 10 rows button or select the amount of rows you want to

evaluate by clicking the icon. You can choose between 10 (default), 100, 1000.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 2

https://hub.knime.com/-/spaces/-/~5Jfx7ca9QQUGohCk/most-recent/
https://hub.knime.com/-/spaces/-/~5Jfx7ca9QQUGohCk/most-recent/


Take into account that this will take more time based on the number of rows to

be evaluated.

Expression Row Filter node

You can use the Expression Row Filter node to remove rows based on a condition defined in

the KNIME Expression Language.

Open the node configuration dialog and you will see something like the following:

Figure 2. KNIME Expression Row Filter node overview

The Expression Row Filter node has a single expression editor where you define the condition

for filtering. If the expression evaluates to FALSE, the row will be removed from the output

table. If it evaluates to TRUE, the row will remain in the output. The output of the expression

must therefore be a BOOLEAN value (for more details regarding types, see the Types section).

If you need to remove rows based on multiple conditions, you can use logical operators like

and, or, and not to combine these conditions (see the Logical Operators section for more

details and note the example in Figure 2).

You can click the Evaluate first 10 rows button or select the amount of rows you want to

evaluate by clicking the icon. You can choose between 10 (default), 100, 1000.



The limit is applied to the input rows, not the output rows. If any rows are

filtered out, the preview will display fewer rows than the set limit. Take into

account that the more rows you evaluate, the more time it will take.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 3

Variable Expression node

You can use the Variable Expression node to create or modify flow variables using the KNIME

Expression Language. This node is useful when you want to create a new flow variable or

modify an existing one based on the values of other flow variables. There is no table input for

this node.

Open the node configuration dialog and you will see something like the following:

Figure 3. KNIME Variable Expression node overview

In the Output flow variable section at the bottom of each expression editor you can choose if

you want to output the result of the expression as a new flow variable and give the flow

variable a desired name or replace an existing flow variable.

You can click the Evaluate button to evaluate the expression and generate a preview of the

result. This is useful to check if the expression is correct and all flow variables are available

as expected.



As explained later in this guide, the KNIME Expression Language only supports

one type of integral numbers (INTEGER) while KNIME Analytics Platform

supports two types of integral numbers for flow variables: IntType and

LongType. Per default the output of a numerical expression will be of the flow

variable type LongType. If you want to output a IntType, there is a dropdown

menu in the output section of each expression editor where you can select the

desired type.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 4

Expression Language

The KNIME Expression Language is a specialized language designed for data manipulation

and analysis within KNIME workflows. Its purpose is to provide an intuitive and efficient way

for users to perform calculations, string manipulations, and row or column-based operations

without the need for extensive programming knowledge. This document serves as a guide for

the syntax, semantics, and usage of the KNIME Expression Language.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 5

Value types and literals

The KNIME Expression Language supports several basic value types, each serving a specific

kind of data. Some operations are only valid for a subset of value types. This is described

where relevant. Every type can be optional, see the section about MISSING for more

information.



¹ KNIME Expression Language uses slightly different types than KNIME

Analytics Platform uses for column types and flow variables. The latter two

differ only in the identifier names. In the following the types of the expression

language are described and how they map to the combined types noted as

[column type , flow variable type] in KNIME Analytics Platform.

BOOLEAN

The value type BOOLEAN is used for logical values, that are either true or false. If handling

optional values, i.e., type BOOLEAN | MISSING, Kleene’s three-valued logic will be applied. For

more details see section General rules for comparison operators.

BOOLEAN literals are either TRUE or FALSE.

BOOLEAN in the expression language maps to the [Boolean, BooleanType]¹ in KNIME

Analytics Platform.

Number types - INTEGER and FLOAT

The KNIME Expression Language only supports one type of integral numbers (INTEGER) and

one type of floating point numbers (FLOAT). For simplicity, different precisions are not

supported.



For operations applied to INTEGER and FLOAT, such as 5 * 3.14, the INTEGER

value is converted to FLOAT automatically. This may cause a loss of precision

for very large numbers.

INTEGER

The value type INTEGER is used for whole numbers. INTEGER literals are written in decimal

form as digits between 0 and 9 with optional _ for visual separation. The first digit cannot be

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 6

https://docs.knime.com/latest/analytics_platform_user_guide/index.html#column-types
https://docs.knime.com/latest/analytics_platform_flow_control_guide/index.html#flow-variables
https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics

0 unless the number is 0 itself.



The values are represented as 64-bit signed two’s-complement integers

resulting in a value range from -9_223_372_036_854_775_808 to

9_223_372_036_854_775_807 (inclusive).

KNIME Analytics Platform types [Number (integer), IntType] and [Number (long),

LongType]¹ are mapped to INTEGER in the expression language without loss of precision.

The output of an expression that returns the INTEGER expression type will be of the

column type Number (long). For flow variables, there is a dropdown menu in the output

section of each expression editor where you can select the desired type, i.e., IntType or

LongType.

FLOAT

The value type FLOAT is used for numbers with fractional parts.

A FLOAT number is written with a decimal point. The decimal point can be at any position in

the number, even at the beginning or end, like 0.123 or .123 or 123. You can use underscores

_ to separate digits to make large numbers easier to read, like 1_000.567_890 is the same as

1000.567890

You can write FLOAT numbers using scientific notation, which is useful for very large or very

small numbers. In scientific notation, e or E is used to denote "times ten to the power of". You

can also use a plus + or minus - sign after e or E to indicate positive or negative exponents,

so that 1.23e4 or 1.23E+4 means 1.23 * 10^(+4) or 12300



The syntax for FLOAT literals is similar to the syntax used in in the Python

programming language. The values are represented as double-precision

floating point numbers (64bit IEEE 754) This results in a value range from 4.9E-

324 to 1.8E+308 (inclusive) and a precision of about 15 decimal digits.

FLOAT in the expression language maps to the [Number (double), DoubleType]¹

column type in KNIME Analytics Platform, and has the same precision.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 7

https://docs.python.org/3/reference/lexical_analysis.html#floating-point-literals
https://docs.python.org/3/reference/lexical_analysis.html#floating-point-literals
https://en.wikipedia.org/wiki/IEEE_754

STRING

The value type STRING is used for sequences of Unicode characters (text). The values are

represented as a sequence of characters enclosed in double quotes "text" or single quotes

'text'.


New lines in strings are permitted, so the string can span multiple lines without

using a special character.

"multi-line
string"
->
multi-line
string

Escape sequences

The backslash \ can be used for escape sequences. A backslash that does not match one of

the following escape sequences is an invalid syntax.

Table 1. Escape sequences

Escape sequence Description Example

\<newline> Backslash and new line in

input text ignored

"xyz \

abc" → xyz abc

\\ Escaping the backslash

itself

"\\something\\" →
\something\

\' Escaping single quotes "\'quoted text\'" →
'quoted text'

\" Escaping double quotes "\"quoted text\"" →
"quoted text"

\b ASCII backspace causes the

cursor to move backwards

across the previous

character

"Hello, W\bWorld!" →
Hello, World!

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 8

Escape sequence Description Example

\r ASCII carriage return causes

the cursor to move to the

beginning of the line

"Hello,\rWorld!" → World!

\n ASCII linefeed causes the

cursor to move to the next

line. Note that on unix-like

systems, this is the only

character used for newlines

and on Windows systems, it

is used in combination with

\r

"Hello,\nWorld!" → Hello,

World!

\t ASCII horizontal tab causes

the cursor to move to the

next tab stop

"Hello,\tWorld!" → Hello,

World!

\uxxxx Unicode characters can be

used as escape sequences.

The xxxx part is a 16-bit hex

value

"\u0041" → A

"\u00E4" → ä

"\u2328" → ⌨

Escape sequences are replaced from left to right and the resulting character of an escape

sequence cannot be part of another escape sequence.

STRING in the expression language maps to [String, StringType]¹ in KNIME Analytics

Platform.

MISSING

The value type MISSING is used for missing values. It is used to represent the absence of a

value in a cell or row, either because the value was missing in the input data or because the

value could not be computed.

All types above except for MISSING can be extended to allow missing values during

evaluation. This is denoted by <TYPE> | MISSING, so a column of type INTEGER |

MISSING can contain both INTEGER values and MISSING values.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 9

Literal MISSING

The literal for a missing value is MISSING. It is case-sensitive and must be written in

uppercase. The literal, i.e., the explicit use of MISSING in an expression is not interchangeable

with the optional type. So, while some_function($["column with only MISSING values"]) is

valid, some_function(MISSING) is not and will result in a syntax error. For an expression that

just returns MISSING without any further operation also a syntax error will be raised as the

type of the expression would not be defined.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 10

Input data access

Row access

To retrieve the value from a column in the current row, two syntax options are available:

Use $["column name"] for any column name, including those with spaces or special

characters. The column name reference between the square brackets follows to rules of

STRING literals.

For column names consisting solely of letters, numbers, and underscores (without starting

with a number), a shorthand syntax $column_name is allowed.

Column names are case-sensitive.

• $["Customer ID"] Value of the column “Customer ID”

• $["Column with a \"double\" quote"] Value of the column ‘Column with a “double”

quote'

• $customer_id Value of the column “customer_id”

There are also special identifiers to access the

• $[ROW_NUMBER] to get the current row number, starting at 1.

• $[ROW_INDEX] to get the current row index, starting at 0.

• $[ROW_ID] to get the RowID, such as "Row99".



The row number, row index, and row ID are not column names and therefore are

not enclosed in quotes. Shorthand syntax is not allowed for these special

identifiers.

Row offsets

Sometimes it is necessary to access values from other rows in the table to perform

calculations. The KNIME Expression Language allows the use of $["column_name", offset]

to reference previous or next rows relative to the current one.

The offset is a static number and must not be an expression itself.

Negative offsets point to previous rows, positive offsets to rows next the current row.

Replacing a column will only take effect after evaluating the expression for the whole table.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 11

This means that the expression only uses the original data from that column.

• $["column_name", -1] Value of the column “column_name” from the previous row


Using an offset will necessarily access values from rows that does not exist. In

this case, the result will be MISSING.

Flow Variable access

Flow variables are accessed using syntax similar to row access, but with two dollar signs:

Use $$["flow var name"] for any flow variable name.

For flow variable names consisting only of letters, numbers, and underscores (without

starting with a number), a shorthand syntax $$flow_var_name is permitted as for column

names.

Flow variable names are case-sensitive.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 12

Operators

The KNIME Expression Language supports a variety of operators for arithmetic, comparison,

and logical operations. The following sections describe the operators available in the

language and their respective rules and behaviors.

Comments

Text following a # symbol is considered a comment and is ignored by the interpreter.

Comments can be used to annotate code for clarity. Comments can be placed on a separate

line or at the end of a line of code.

This is a comment
1 + 2 # This is another comment but "1 + 2" is the expression

Arithmetic

The following table lists the arithmetic operators available in the KNIME Expression

Language, along with their descriptions and typing notes. Arithmetic operations apply also to

optional types. If one or both of the operands is missing, the result is missing. For clarity, we

omit the optional type in the following table.

Table 2. Arithmetic operators

Name Operator Description Typing notes

Addition + Yields the sum of

two numbers.

Applicable to

INTEGER and FLOAT.

Subtraction - Yields the difference

of two numbers. Can

also be used as a

unary operator to

negate the operand.

Applicable to

INTEGER and FLOAT.

Multiplication * Yields the product of

two numbers.

Applicable to

INTEGER and FLOAT.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 13

Name Operator Description Typing notes

Division / Yields the quotient

of two numbers.

Applies to INTEGER

and FLOAT. The result

is always of type

FLOAT.

Floor Division // Yields the quotient

of two numbers

floored to the next

INTEGER number.

Only applicable to

INTEGER values.

Exponentiation ** Yields the power of

two numbers.

Applicable to

INTEGER and FLOAT.

Remainder % Yields the remainder

from the division of

the first argument by

the second.

Applicable to

INTEGER and FLOAT.

If both operands are of the same type, the result is of the same type if not specified

otherwise for the specific operator. If one or both of the operand types is optional, the result

is optional. If the operands are of type INTEGER and FLOAT (order irrelevant), the INTEGER value

is converted to the closest value of type FLOAT, and the result is of type FLOAT.

Division by zero

Dividing a number by zero with the division, floor division or remainder operator yields a

runtime warning. The output of the operation is defined via the following rules.

Table 3. Division by zero ruleset

Name Operator Condition Output

Division / The first operand is

0

0. / 0 → NaN

Both operands have

the same sign

1. / 0 → INFINITY

The operands have

different signs

-1. / 0 →
-INFINITY

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 14

Name Operator Condition Output

Floor Division // - 0

Floor division returns

always an INTEGER.

Remainder % The first operand is

of type FLOAT

NaN

Both of the operands

are of type INTEGER

0

Comparison

Comparison operators are used to compare two numeric values (FLOAT and INTEGER) and

yield a BOOLEAN result. There are two kinds of comparison operators: ordering and equality.

Comparisons never return optional results. This ensures that optionals are not

propagated through comparison. Therefore, it is less likely that the result of an

expression is optional.

General rules for comparison operators

Comparison operators compare numeric types, while comparing to MISSING always returns

FALSE. Equality operators work on all types as long as both operands are of the same type or

MISSING, with the exception that INTEGER and FLOAT can be checked for equality, too.

Table 4. Comparison operators

Name Operator Kind Notes

Less Than < Ordering

Less Than or Equal

To

<= Ordering Note that MISSING <=

MISSING is TRUE

Greater Than > Ordering

Greater Than or

Equal To

>= Ordering Note that MISSING >=

MISSING is TRUE

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 15

Name Operator Kind Notes

Equal = or == Equality

Not Equal != or <> Equality Same as not (a ==

b)

Logical operators

The logical operators and, or, and not apply to BOOLEAN types as well as to their optional

BOOLEAN | MISSING types. and and or are binary operators while not is a unary operator.

If both of the operands are of type BOOLEAN, the result is of type BOOLEAN. If the type of one or

both of the operands is optional, i.e., BOOLEAN | MISSING, missing values are interpreted as

unknown according to Kleene’s three-valued logic.

Table 5. Logical operators

Name Operator Description Examples

Logical AND and Yields TRUE if both

operands are TRUE.

Yields FALSE if at

least one operand is

FALSE and MISSING

otherwise .

TRUE and FALSE →
FALSE

TRUE and MISSING →
MISSING

FALSE and MISSING

→ FALSE

Logical OR or Yields FALSE if both

operands are FALSE.

Yields TRUE if at least

one operand is TRUE,

otherwise MISSING.

TRUE or FALSE →
TRUE

TRUE or MISSING →
TRUE

MISSING or FALSE →
MISSING

Logical NOT not Yields TRUE if the

operand is FALSE.

Yields FALSE if the

operand is TRUE and

MISSING if the

operand is MISSING.

not TRUE → FALSE

not FALSE → TRUE

not MISSING →
MISSING

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 16

https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics

String concatenation

The operator + can also be used for string concatenation if at least one of the operands is of

type STRING or STRING | MISSING.



A literal MISSING is not a supported type and will result in a syntax error. The

output type of a string concatenation is always a STRING. Missing values in the

input data are mapped to the string “MISSING”.

"Hello" + " " + "World" -> "Hello World"
"Hello" + 42 -> "Hello42"
"Hello" + $["column with missing value"] -> "HelloMISSING"
"Hello" + MISSING -> Syntax error

Missing coalescing operator

The missing coalescing operator ?? is a binary operator that returns the left operand if it is

not MISSING, otherwise it returns the right operand. Both operands must have the same type

and the result is of the same type. If both operands are MISSING values, the result is MISSING.

Even though it will rarely be useful, you can pass MISSING as one of the arguments to ??.

However, MISSING ?? MISSING is treated as syntax error.

1 ?? 2 -> 1
MISSING ?? 2 -> 2
MISSING ?? MISSING -> Syntax error

Operator precedence

Operator precedence defines the order in which operations are evaluated in an expression,

when it contains more than one operator in series. You can always use parentheses (,) to

enforce a specific order of evaluation. The following table lists the operators in order of

precedence, from highest to lowest.

1. Missing Coalescing (??)

2. Exponentiation (**)

3. Negation (unary -)

4. Multiplication (*), Division (/), Remainder (%), Integer Division (//)

5. Addition (+), Subtraction (-)

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 17

6. Comparison operators (<, <=, >, >=, !=, <>, =, ==)

7. Logical NOT (not)

8. Logical AND (and)

9. Logical OR (or)

Operations with higher precedence are evaluated before those with lower precedence.

Operations with the same precedence level are evaluated from left to right except for **

which is evaluated from right to left. In the following we give some examples to illustrate the

precedence of the operators.

Table 6. Operator precedence examples

Expression With Parenthesis Result Explanation

1 + 2 * 3 1 + (2 * 3) 7 multiplication is

evaluated first

1 + 2 ** 3 * 4 1 + ((2 ** 3) *

4)

33 Exponentiation is

evaluated before

multiplication and

multiplication is

evaluated before

addition

2 * 2 ** 3 ** 2 2 * (2 ** (3 **

2))

1024 Exponentiation is

evaluated first and

from right to left

TRUE or FALSE and

FALSE

TRUE or (FALSE and

FALSE)

TRUE and is evaluated first

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 18

Functions

There are two types of functions that are usable in an expression that will be distinguished in

the following sections: (1) Row-wise functions that apply row-wise to generate a new value

from one or multiple values of each input row and (2) Aggregation functions that apply to a

whole column to generate a single value that can be used for each evaluated row.

There is a function catalog available in the editor to help with the selection of functions and

their arguments by providing detailed descriptions and examples. You will find built-in

Constants there, too.

Row-wise functions

Functions evaluated row-wise are always lower-case and calls are made using the function

name followed by parentheses containing any arguments:

function_name(arg1, arg2, …)

Each function has a specific number of arguments and types that it expects. If the arguments

do not match the expected types, a type error is raised. The return type of a function is

determined by the function itself and is not necessarily the same as the input types.


Every function returns some value and there are no void functions. Functions

can be nested, i.e., a function call can be an argument to another function.

If there are multiple arguments, they must be separated by commas. Each argument can be

any valid expression. You may optionally include a trailing comma after the last argument.

Examples:

sqrt(4) -> 2
pow(abs(-sqrt(3.14**2)),2) -> 3.14
if(TRUE, "true branch","false branch") -> "true branch"

Aggregation functions

Aggregation Functions are a special set of functions prefixed with COLUMN_ that calculate

aggregations over whole columns, such as their minimum, maximum, or mean values, for

example, COLUMN_MIN("Column Name") .

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 19


The aggregation functions take a string literal "Column name" instead of a value

from a row ($["column name"] or $column_name) as input.

In aggregation functions we offer to provide arguments positionally and by name of the

argument. Positional arguments are always first, followed by named arguments. Named

arguments are always provided as arg_name=value.

Let’s illustrate that for the aggregation function COLUMN_AVERAGE(column, ignore_nan)

• Only positional arguments: COLUMN_AVERAGE("Column Name", TRUE)

• Only named arguments: COLUMN_AVERAGE(column="Column Name",ignore_nan=TRUE)

• Mixed arguments: COLUMN_AVERAGE("Column Name", ignore_nan=TRUE,)

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 20

Constants

The KNIME Expression Language provides a set of predefined constants that can be used in

expressions. These constants are used to represent common mathematical values and

special values. The following constants are predefined and can be used in expressions:

Table 7. Constants

Name Symbol Type Description

Truth value TRUE BOOLEAN The boolean value

true.

False value FALSE BOOLEAN The boolean value

false.

Euler’s number e E FLOAT Euler’s number,

~2.71828, used as

the base of natural

logarithms and in

exponential

functions.

Pi or π PI FLOAT The constant Pi,

~3.14159, the ratio

of a circle’s

circumference to its

diameter.

Positive Infinity INFINITY FLOAT A special constant

representing positive

infinity.

Not a Number NaN FLOAT A special constant

representing "Not a

Number".

Smallest positive

float

TINY_FLOAT FLOAT The smallest

positive float value

representable by this

computer.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 21

Name Symbol Type Description

Largest positive float MAX_FLOAT FLOAT The largest positive

value that can be

represented as a

FLOAT.

Smallest negative

float

MIN_FLOAT FLOAT The smallest

negative value that

can be represented

as a FLOAT.

Largest positive

integer

MAX_INTEGER INTEGER The largest positive

value that can be

represented as an

INTEGER.

Smallest negative

integer

MIN_INTEGER INTEGER The smallest

negative value that

can be represented

as an INTEGER.

Missing value MISSING MISSING A special constant

representing a

missing value.

KNIME Expressions Guide

© 2025 KNIME AG. All rights reserved. 22

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Expressions Guide
	Table of Contents
	Introduction
	Expression nodes
	General Behaviour
	Expression node
	Expression Row Filter node
	Variable Expression node

	Expression Language
	Value types and literals
	Input data access
	Operators
	Functions
	Constants

