Open for Innovation

KNIM

KNIME Expressions Guide

KNIME AG, Zurich, Switzerland
Version 5.4 (last updated on)

Table of Contents

INtrOdUCTiON. 1
EXPreSSiON NOAESo 1
General Behaviour 1
EXpression Node 2
Expression Row Filternode 3
Variable Expression node. 4
EXpression Language.t e 5
Valuetypesand literals. 6
Input data @aCCesso 11
(@] =T =1 (o] = 13
FUNCHIONS . . . 19

CONS ANTS . .« . . 21

KNIME Expressions Guide

Introduction

In this guide you will find documentation about:
+ The Expression nodes: Learn how to perform versatile data manipulation in KNIME
workflows using the KNIME Expression Language.

« The KNIME Expression Language: Find guidance for the syntax, semantics, and usage
of the KNIME Expression Language.

Expression nodes

There are currently three nodes available in KNIME Analytics Platform that allow you to use
the KNIME Expression Language to manipulate your data within KNIME workflows:

+ Expression: Enables row-by-row data manipulation to add or replace columns.

+ Expression Row Filter: Filters rows based on a condition.

+ Variable Expression: Allows you to create or modify flow variables.

Simply drag and drop one of the nodes from the node repository and connect it.

General Behaviour

You can use the KNIME Expression nodes to perform manipulation of your data. The nodes
use the KNIME Expression Language that you can find explained in the next section.

You can write your expression in the expression editor, using the input data available from
the input panel which can be found on the left side. On the right side you can find the catalog
of all the available functions with documentation about their usage. You can filter them and
also expand or collapse the available categories.

Most Expression nodes support multiple expressions that will be evaluated in sequence. You
can add a new expression by clicking the Add expression button. Each single expression
editor has a control bar in the top-right corner that allows you to move the expression up or
down, duplicate it, or delete it.

Every expression editor has an output section attached below it that allows to configure the
settings of the output. Editors will be evaluated from the top to the bottom, so you can use
the result of one editor in the next one.

There is a button to evaluate the expression and generate a preview of the result. This is

© 2025 KNIME AG. All rights reserved.

https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.row.mapper.ExpressionRowMapperNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.row.filter.ExpressionRowFilterNodeFactory/
https://hub.knime.com/knime/extensions/org.knime.features.base.expressions/latest/org.knime.base.expressions.node.variable.ExpressionFlowVariableNodeFactory/

KNIME Expressions Guide

useful to check if the expression is correct and to see the result of the manipulation.

Additionally, the node integrates with the KNIME Al Assistant extension, which offers Al-
assisted expression generation and modification, further simplifying the process. By asking
K-Al for assistance, you can receive suggestions for expressions based on the column
names and column types in your table.

i Even with K-Al enabled, no data from the table is sent to the Al service.

Expression node

You can use the Expression node to perform row-by-row manipulation of your data and add
or replace column data.

Open the node configuration dialog and you will see something like the following:

sum(input_1, input_2, ..

Inputs & Outputs

Available input data
(via table or flow
variable) usable in the
expression.

Double click or
drag&drop to insert.

Function catalog

L~ Built-in functions to
i

manipulate data. Click
on a function to see
an extensive
documentation about
the usage of every
function. Double click
or drag&drop to
Expression editors insert.
Multiple code editors
to craft expressions.
Provides
autocompletion and
displays errors.

Copy, reorder or
delete editors with the
control bar in the top
right.

Result preview

Evaluate the
expression for a
limited number of rows
to see whether your
expression works as
expected.

Output target

Choose where the
result of the
expression is stored.
Replace an existing
column or create a
new one.

Figure 1. KNIME Expression node overview

In the Output column section at the bottom of each expression editor you can choose if you
want to output the result of the expression in a new column and give the column a desired
name or replace the existing column.

Find an example on how to use the expression node on KNIME Community
Hub.

You can click the Evaluate first 10 rows button or select the amount of rows you want to
evaluate by clicking the ~ icon. You can choose between 10 (default), 100, 1000.

© 2025 KNIME AG. All rights reserved. 2

https://hub.knime.com/-/spaces/-/~5Jfx7ca9QQUGohCk/most-recent/
https://hub.knime.com/-/spaces/-/~5Jfx7ca9QQUGohCk/most-recent/

KNIME Expressions Guide

Take into account that this will take more time based on the number of rows to
be evaluated.

Expression Row Filter node

You can use the Expression Row Filter node to remove rows based on a condition defined in
the KNIME Expression Language.

Open the node configuration dialog and you will see something like the following:

sum(input_1, input_2, ...)

Filter expression

Inputs & Outputs

Available input data
(via table or flow
variable) usable in the
expression.

Double click or
drag&drop to insert.

Function catalog

Built-in functions to
manipulate data. Click
on a function to see an
extensive
documentation about
the usage of every
function. Double click
or drag&drop to insert.

Expression editor 1

Single code editor to
craft an expression.
Provides
autocompletion and
displays errors in case
the expression does
contain errors.

Result preview

To check if your
expression is filtering
rows correctly, review
the output with a
limited number of
rows. Keep in mind,
the set row limit
applies to the input
rows. If any rows are
filtered out, the
preview will display
fewer rows than the
set limit.

Output panel 1
The node filters table
rows depending on the
given boolean
expression. This
operation do not need
additional output
settings

Figure 2. KNIME Expression Row Filter node overview

The Expression Row Filter node has a single expression editor where you define the condition
for filtering. If the expression evaluates to FALSE, the row will be removed from the output
table. If it evaluates to TRUE, the row will remain in the output. The output of the expression
must therefore be a BOOLEAN value (for more details regarding types, see the Types section).

If you need to remove rows based on multiple conditions, you can use logical operators like
and, or, and not to combine these conditions (see the Logical Operators section for more
details and note the example in Figure 2).

You can click the Evaluate first 10 rows button or select the amount of rows you want to
evaluate by clicking the \~ icon. You can choose between 10 (default), 100, 1000.

The limit is applied to the input rows, not the output rows. If any rows are

i filtered out, the preview will display fewer rows than the set limit. Take into
account that the more rows you evaluate, the more time it will take.

© 2025 KNIME AG. All rights reserved. 3

KNIME Expressions Guide

Variable Expression node

You can use the Variable Expression node to create or modify flow variables using the KNIME
Expression Language. This node is useful when you want to create a new flow variable or
modify an existing one based on the values of other flow variables. There is no table input for
this node.

Open the node configuration dialog and you will see something like the following:

Inputs

o Flow v
Available input flow \O

variables usable in the T e
expression.

Double click or . c
drag&drop to insert. # tring($S

count(string, search, ..) Function catalog

Built-in functions to
manipulate data. Click
on a function to see
an extensive
documentation about
the usage of every
function. Double click
or drag&drop to
insert.

Expression editors | ~——

Multiple code editors
to craft expressions.
Provides
autocompletion and
displays errors. -
Copy. reorder or Output flow variable M nt_fow_veriable
delete editors with the
control bar in the top
right.

Output type

The expression
language uses only
one integer type, i.e.,
LongType. If needed
the output can be
converted to an
IntType.

Output target

Choose where the Owner ID Data Type Variable Name
result of the
expression is stored.
Replace an existing
flow variable or create

Result preview

Evaluate the
expressions to see
whether your
expression works and

Y S you have created or
anew one. changed flow variables
as expected.

Figure 3. KNIME Variable Expression node overview

In the Output flow variable section at the bottom of each expression editor you can choose if
you want to output the result of the expression as a new flow variable and give the flow
variable a desired name or replace an existing flow variable.

You can click the Evaluate button to evaluate the expression and generate a preview of the
result. This is useful to check if the expression is correct and all flow variables are available
as expected.

As explained later in this guide, the KNIME Expression Language only supports
one type of integral numbers (INTEGER) while KNIME Analytics Platform
supports two types of integral numbers for flow variables: IntType and
LongType. Per default the output of a numerical expression will be of the flow
variable type LongType. If you want to output a IntType, there is a dropdown
menu in the output section of each expression editor where you can select the
desired type.

© 2025 KNIME AG. All rights reserved. 4

KNIME Expressions Guide

Expression Language

The KNIME Expression Language is a specialized language designed for data manipulation
and analysis within KNIME workflows. Its purpose is to provide an intuitive and efficient way
for users to perform calculations, string manipulations, and row or column-based operations
without the need for extensive programming knowledge. This document serves as a guide for
the syntax, semantics, and usage of the KNIME Expression Language.

© 2025 KNIME AG. All rights reserved. 5

KNIME Expressions Guide

Value types and literals

The KNIME Expression Language supports several basic value types, each serving a specific
kind of data. Some operations are only valid for a subset of value types. This is described
where relevant. Every type can be optional, see the section about MISSING for more
information.

T KNIME Expression Language uses slightly different types than KNIME
Analytics Platform uses for column types and flow variables. The latter two

i differ only in the identifier names. In the following the types of the expression
language are described and how they map to the combined types noted as
[column type , flow variable type] in KNIME Analytics Platform.
BOOLEAN

The value type BOOLEAN is used for logical values, that are either true or false. If handling
optional values, i.e., type BOOLEAN | MISSING, Kleene's three-valued logic will be applied. For
more details see section General rules for comparison operators.

BOOLEAN literals are either TRUE or FALSE.

BOOLEAN in the expression language maps to the [Boolean, BooleanType]' in KNIME
Analytics Platform.

Number types - INTEGER and FLOAT

The KNIME Expression Language only supports one type of integral numbers (INTEGER) and
one type of floating point numbers (FLOAT). For simplicity, different precisions are not
supported.

For operations applied to INTEGER and FLOAT, suchas 5 * 3.14, the INTEGER
i value is converted to FLOAT automatically. This may cause a loss of precision
for very large numbers.

INTEGER

The value type INTEGER is used for whole numbers. INTEGER literals are written in decimal
form as digits between 0 and 9 with optional _ for visual separation. The first digit cannot be

© 2025 KNIME AG. All rights reserved.

https://docs.knime.com/latest/analytics_platform_user_guide/index.html#column-types
https://docs.knime.com/latest/analytics_platform_flow_control_guide/index.html#flow-variables
https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics

KNIME Expressions Guide

0 unless the number is 0 itself.

The values are represented as 64-bit signed two’s-complement integers
i resulting in a value range from -9_223_372_036_854_775_808 to
9_223_372_036_854_775_807 (inclusive).

KNIME Analytics Platform types [Number (integer), IntType] and [Number (long),
LongType]' are mapped to INTEGER in the expression language without loss of precision.
The output of an expression that returns the INTEGER expression type will be of the
column type Number (long). For flow variables, there is a dropdown menu in the output
section of each expression editor where you can select the desired type, i.e., IntType or
LongType.

FLOAT

The value type FLOAT is used for numbers with fractional parts.

A FLOAT number is written with a decimal point. The decimal point can be at any position in
the number, even at the beginning or end, like 8.123 or .123 or 123. You can use underscores
_ to separate digits to make large numbers easier to read, like 1_000.567_890 is the same as
1000.567890

You can write FLOAT numbers using scientific notation, which is useful for very large or very
small numbers. In scientific notation, e or E is used to denote "times ten to the power of". You
can also use a plus + or minus - sign after e or E to indicate positive or negative exponents,
sothat 1.23e4 or 1.23E+4 means 1.23 * 107 (+4) or 12300

The syntax for FLOAT literals is similar to the syntax used in in the Python
programming language. The values are represented as double-precision
floating point numbers (64bit IEEE 754) This results in a value range from 4.9E-
324 to 1.8E+308 (inclusive) and a precision of about 15 decimal digits.

FLOAT in the expression language maps to the [Number (double), DoubleType]’
column type in KNIME Analytics Platform, and has the same precision.

© 2025 KNIME AG. All rights reserved. 7

https://docs.python.org/3/reference/lexical_analysis.html#floating-point-literals
https://docs.python.org/3/reference/lexical_analysis.html#floating-point-literals
https://en.wikipedia.org/wiki/IEEE_754

KNIME Expressions Guide

STRING

The value type STRING is used for sequences of Unicode characters (text). The values are
represented as a sequence of characters enclosed in double quotes "text" or single quotes

"text'.
[J
L using a special character.
"multi-Tine
string”
->
multi-line
string

Escape sequences

New lines in strings are permitted, so the string can span multiple lines without

The backslash \ can be used for escape sequences. A backslash that does not match one of
the following escape sequences is an invalid syntax.

Table 1. Escape sequences

Escape sequence

\<newline>

\\

\b

© 2025 KNIME AG. All rights reserved.

Description

Backslash and new line in
input text ignored

Escaping the backslash
itself

Escaping single quotes

Escaping double quotes

ASCII backspace causes the
cursor to move backwards
across the previous
character

Example

quZ\
abc" = xyz abc

"\\something\\" -
\something\

"\'quoted text\'" -
'quoted text'

"\"quoted text\"" -
"quoted text"

"Hello, W\bWorld!" =
Hello, World!

KNIME Expressions Guide

Escape sequence

\r

\n

\t

\UXXXX

Description

ASCII carriage return causes
the cursor to move to the
beginning of the line

ASCII linefeed causes the
cursor to move to the next
line. Note that on unix-like
systems, this is the only
character used for newlines
and on Windows systems, it
is used in combination with
\r

ASCII horizontal tab causes
the cursor to move to the
next tab stop

Unicode characters can be
used as escape sequences.
The xxxx part is a 16-bit hex
value

Example

"Hello,\rWorld!" = World!

"Hello,\nWor1ld!" = Hello,
World!

"Hello,\tWorld!" - Hello,
World!

"\u041" > A
"\U@OE4" —~> &
"\u2328" >

Escape sequences are replaced from left to right and the resulting character of an escape
sequence cannot be part of another escape sequence.

STRING in the expression language maps to [String, StringType]' in KNIME Analytics

Platform.

MISSING

The value type MISSING is used for missing values. It is used to represent the absence of a
value in a cell or row, either because the value was missing in the input data or because the

value could not be computed.

All types above except for MISSING can be extended to allow missing values during
evaluation. This is denoted by <TYPE> | MISSING, so a column of type INTEGER |

MISSING can contain both INTEGER values and MISSING values.

© 2025 KNIME AG. All rights reserved.

KNIME Expressions Guide

Literal MISSING

The literal for a missing value is MISSING. It is case-sensitive and must be written in
uppercase. The literal, i.e., the explicit use of MISSING in an expression is not interchangeable
with the optional type. So, while some_function($["column with only MISSING values"]) is
valid, some_function(MISSING) is not and will result in a syntax error. For an expression that
just returns MISSING without any further operation also a syntax error will be raised as the
type of the expression would not be defined.

© 2025 KNIME AG. All rights reserved.

10

KNIME Expressions Guide

Input data access

Row access

To retrieve the value from a column in the current row, two syntax options are available:

Use $["column name"] for any column name, including those with spaces or special
characters. The column name reference between the square brackets follows to rules of
STRING literals.

For column names consisting solely of letters, numbers, and underscores (without starting
with a number), a shorthand syntax $column_name is allowed.

Column names are case-sensitive.

* $["Customer ID"] Value of the column “Customer ID”

* $["Column with a \"double\" quote"] Value of the column ‘Column with a “double”
quote'

* $customer_id Value of the column “customer_id”
There are also special identifiers to access the

* $[ROW_NUMBER] to get the current row number, starting at 1.
* $[ROW_INDEX] to get the current row index, starting at 0.
* $[ROW_ID] to get the RowID, such as "Row99".

The row number, row index, and row ID are not column names and therefore are
i not enclosed in quotes. Shorthand syntax is not allowed for these special
identifiers.

Row offsets

Sometimes it is necessary to access values from other rows in the table to perform
calculations. The KNIME Expression Language allows the use of $["column_name", offset]
to reference previous or next rows relative to the current one.

The offset is a static number and must not be an expression itself.

Negative offsets point to previous rows, positive offsets to rows next the current row.
Replacing a column will only take effect after evaluating the expression for the whole table.

© 2025 KNIME AG. All rights reserved. 11

KNIME Expressions Guide

This means that the expression only uses the original data from that column.

* $["column_name", -1] Value of the column “column_name” from the previous row

Using an offset will necessarily access values from rows that does not exist. In
this case, the result will be MISSING.

Flow Variable access
Flow variables are accessed using syntax similar to row access, but with two dollar signs:
Use $$["flow var name"] for any flow variable name.

For flow variable names consisting only of letters, numbers, and underscores (without
starting with a number), a shorthand syntax $$flow_var_name is permitted as for column
names.

Flow variable names are case-sensitive.

© 2025 KNIME AG. All rights reserved.

12

KNIME Expressions Guide

Operators

The KNIME Expression Language supports a variety of operators for arithmetic, comparison,
and logical operations. The following sections describe the operators available in the
language and their respective rules and behaviors.

Comments

Text following a # symbol is considered a comment and is ignored by the interpreter.
Comments can be used to annotate code for clarity. Comments can be placed on a separate

line or at the end of a line of code.

This is a comment

1+ 2 # This is another comment but "1 + 2" is the expression

Arithmetic

The following table lists the arithmetic operators available in the KNIME Expression
Language, along with their descriptions and typing notes. Arithmetic operations apply also to
optional types. If one or both of the operands is missing, the result is missing. For clarity, we

omit the optional type in the following table.

Table 2. Arithmetic operators

Name Operator
Addition +
Subtraction -
Multiplication *

© 2025 KNIME AG. All rights reserved.

Description

Yields the sum of
two numbers.

Yields the difference
of two numbers. Can
also be used as a
unary operator to
negate the operand.

Yields the product of
two numbers.

Typing notes

Applicable to
INTEGER and FLOAT.

Applicable to
INTEGER and FLOAT.

Applicable to
INTEGER and FLOAT.

13

KNIME Expressions Guide

Name Operator
Division /

Floor Division //
Exponentiation *k
Remainder %

Description

Yields the quotient
of two numbers.

Yields the quotient
of two numbers
floored to the next
INTEGER number.

Yields the power of
two numbers.

Yields the remainder
from the division of
the first argument by
the second.

Typing notes

Applies to INTEGER
and FLOAT. The result
is always of type
FLOAT.

Only applicable to
INTEGER values.

Applicable to
INTEGER and FLOAT.

Applicable to
INTEGER and FLOAT.

If both operands are of the same type, the result is of the same type if not specified
otherwise for the specific operator. If one or both of the operand types is optional, the result
is optional. If the operands are of type INTEGER and FLOAT (order irrelevant), the INTEGER value
is converted to the closest value of type FLOAT, and the result is of type FLOAT.

Division by zero

Dividing a number by zero with the division, floor division or remainder operator yields a
runtime warning. The output of the operation is defined via the following rules.

Table 3. Division by zero ruleset

Name Operator

Division /

© 2025 KNIME AG. All rights reserved.

Condition

The first operand is
0

Both operands have
the same sign

The operands have
different signs

Output

0. / 0 - NaN

1. / @ — INFINITY

1./ 0 >
-INFINITY

14

KNIME Expressions Guide

Name Operator Condition Output

Floor Division // - 0
Floor division returns
always an INTEGER.

Remainder % The first operandis NaN
of type FLOAT

Both of the operands 0
are of type INTEGER

Comparison
Comparison operators are used to compare two numeric values (FLOAT and INTEGER) and

yield a BOOLEAN result. There are two kinds of comparison operators: ordering and equality.

Comparisons never return optional results. This ensures that optionals are not
propagated through comparison. Therefore, it is less likely that the result of an
expression is optional.

General rules for comparison operators

Comparison operators compare numeric types, while comparing to MISSING always returns
FALSE. Equality operators work on all types as long as both operands are of the same type or
MISSING, with the exception that INTEGER and FLOAT can be checked for equality, too.

Table 4. Comparison operators

Name Operator Kind Notes

Less Than < Ordering

Less Than or Equal <= Ordering Note that MISSING <=
To MISSING is TRUE
Greater Than > Ordering

Greater Than or >= Ordering Note that MISSING >=
Equal To MISSING is TRUE

© 2025 KNIME AG. All rights reserved. 15

KNIME Expressions Guide

Name
Equal

Not Equal

Logical operators

Operator

=0r ==

Kind
Equality

Equality

Notes

Same as not (a ==
b)

The logical operators and, or, and not apply to BOOLEAN types as well as to their optional
BOOLEAN | MISSING types. and and or are binary operators while not is a unary operator.

If both of the operands are of type BOOLEAN, the result is of type BOOLEAN. If the type of one or
both of the operands is optional, i.e., BOOLEAN | MISSING, missing values are interpreted as
unknown according to Kleene's three-valued logic.

Table 5. Logical operators

Name

Logical AND

Logical OR

Logical NOT

Operator

and

or

not

© 2025 KNIME AG. All rights reserved.

Description

Yields TRUE if both
operands are TRUE.
Yields FALSE if at
least one operand is
FALSE and MISSING
otherwise .

Yields FALSE if both
operands are FALSE.
Yields TRUE if at least
one operand is TRUE,
otherwise MISSING.

Yields TRUE if the
operand is FALSE.
Yields FALSE if the
operand is TRUE and
MISSING if the
operand is MISSING.

Examples

TRUE and FALSE —
FALSE

TRUE and MISSING -
MISSING

FALSE and MISSING
— FALSE

TRUE or FALSE -
TRUE

TRUE or MISSING -
TRUE

MISSING or FALSE -
MISSING

not TRUE - FALSE
not FALSE - TRUE
not MISSING -
MISSING

16

https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics

KNIME Expressions Guide

String concatenation

The operator + can also be used for string concatenation if at least one of the operands is of
type STRING or STRING | MISSING.

A literal MISSING is not a supported type and will result in a syntax error. The
i output type of a string concatenation is always a STRING. Missing values in the
input data are mapped to the string “MISSING".

"Hello" + " " + "World" -> "Hello World"
"Hello" + 42 -> "Hello42"
"Hello" + $["column with missing value"] -> "HelloMISSING"
"Hello" + MISSING -> Syntax error

Missing coalescing operator

The missing coalescing operator 77 is a binary operator that returns the left operand if it is
not MISSING, otherwise it returns the right operand. Both operands must have the same type
and the result is of the same type. If both operands are MISSING values, the result is MISSING.
Even though it will rarely be useful, you can pass MISSING as one of the arguments to 77.
However, MISSING 77 MISSING is treated as syntax error.

17?72 -> 1
MISSING 77 2 -> 2
MISSING ?? MISSING -> Syntax error

Operator precedence

Operator precedence defines the order in which operations are evaluated in an expression,
when it contains more than one operator in series. You can always use parentheses (,) to
enforce a specific order of evaluation. The following table lists the operators in order of
precedence, from highest to lowest.

—

. Missing Coalescing (7?)
. Exponentiation (**)
. Negation (unary -)

. Multiplication (*), Division (/), Remainder (%), Integer Division (//)

a A~ W BN

. Addition (+), Subtraction (-)

© 2025 KNIME AG. All rights reserved. 17

KNIME Expressions Guide

6. Comparison operators (<, <=, >, >=, |=, <>, =, ==

7. Logical NOT (not)

8. Logical AND (and)

9. Logical OR (or)
Operations with higher precedence are evaluated before those with lower precedence.
Operations with the same precedence level are evaluated from left to right except for **

which is evaluated from right to left. In the following we give some examples to illustrate the
precedence of the operators.

Table 6. Operator precedence examples

Expression With Parenthesis Result Explanation

1T+2*3 1T+ (2 *3) 7 multiplication is
evaluated first

14+2* 3 *4 T+ ((2*>3) * 33 Exponentiation is
4) evaluated before
multiplication and
multiplication is
evaluated before

addition
2 %) ¥k 3 xR 2 * (2 ** (3 ** 1024 Exponentiation is
2)) evaluated first and

from right to left

TRUE or FALSE and TRUE or (FALSE and @ TRUE and is evaluated first
FALSE FALSE)

© 2025 KNIME AG. All rights reserved. 18

KNIME Expressions Guide

Functions

There are two types of functions that are usable in an expression that will be distinguished in
the following sections: (1) Row-wise functions that apply row-wise to generate a new value
from one or multiple values of each input row and (2) Aggregation functions that apply to a
whole column to generate a single value that can be used for each evaluated row.

There is a function catalog available in the editor to help with the selection of functions and
their arguments by providing detailed descriptions and examples. You will find built-in
Constants there, too.

Row-wise functions

Functions evaluated row-wise are always lower-case and calls are made using the function
name followed by parentheses containing any arguments:

function_name(arg1, arg2,)

Each function has a specific number of arguments and types that it expects. If the arguments
do not match the expected types, a type error is raised. The return type of a function is
determined by the function itself and is not necessarily the same as the input types.

o Every function returns some value and there are no void functions. Functions
can be nested, i.e., a function call can be an argument to another function.

If there are multiple arguments, they must be separated by commas. Each argument can be
any valid expression. You may optionally include a trailing comma after the last argument.

Examples:
sqrt(4) -> 2
pow(abs(-sqrt(3.14**2)),2) -> 3.14

if(TRUE, "true branch","false branch") -> "true branch"

Aggregation functions

Aggregation Functions are a special set of functions prefixed with COLUMN_ that calculate
aggregations over whole columns, such as their minimum, maximum, or mean values, for
example, COLUMN_MIN("Column Name") .

© 2025 KNIME AG. All rights reserved. 19

KNIME Expressions Guide

o The aggregation functions take a string literal "Column name" instead of a value
from arow ($["column name"] or $column_name) as input.

In aggregation functions we offer to provide arguments positionally and by name of the
argument. Positional arguments are always first, followed by named arguments. Named
arguments are always provided as arg_name=value.

Let's illustrate that for the aggregation function COLUMN_AVERAGE(column, ignore_nan)

* Only positional arguments: COLUMN_AVERAGE ("Column Name", TRUE)
* Only named arguments: COLUMN_AVERAGE (column="Column Name",ignore_nan=TRUE)
* Mixed arguments: COLUMN_AVERAGE ("Column Name", ignore_nan=TRUE,)

© 2025 KNIME AG. All rights reserved.

20

KNIME Expressions Guide

Constants

The KNIME Expression Language provides a set of predefined constants that can be used in
expressions. These constants are used to represent common mathematical values and
special values. The following constants are predefined and can be used in expressions:

Table 7. Constants

Name Symbol Type Description

Truth value TRUE BOOLEAN The boolean value
true.

False value FALSE BOOLEAN The boolean value
false.

Euler's number e E FLOAT Euler's number,

~2.71828, used as
the base of natural
logarithms and in
exponential
functions.

Piorm PI FLOAT The constant Pi,
~3.14159, the ratio
of a circle’s
circumference to its
diameter.

Positive Infinity INFINITY FLOAT A special constant
representing positive
infinity.

Not a Number NaN FLOAT A special constant
representing "Not a
Number".

Smallest positive TINY_FLOAT FLOAT The smallest

float positive float value
representable by this
computer.

© 2025 KNIME AG. All rights reserved. 21

KNIME Expressions Guide

Name Symbol Type Description

Largest positive float MAX FLOAT FLOAT The largest positive
value that can be
represented as a

FLOAT.
Smallest negative MIN FLOAT FLOAT The smallest
float negative value that
can be represented
as a FLOAT.
Largest positive MAX_INTEGER INTEGER The largest positive
integer value that can be
represented as an
INTEGER.
Smallest negative MIN INTEGER INTEGER The smallest
integer negative value that

can be represented
as an INTEGER.

Missing value MISSING MISSING A special constant
representing a
missing value.

© 2025 KNIME AG. All rights reserved.

S Open for Innovation

KNIME AG

Talacker 50

8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license
from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Expressions Guide
	Table of Contents
	Introduction
	Expression nodes
	General Behaviour
	Expression node
	Expression Row Filter node
	Variable Expression node

	Expression Language
	Value types and literals
	Input data access
	Operators
	Functions
	Constants

