
KNIME Components Guide
KNIME AG, Zurich, Switzerland

Version 5.5 (last updated on)

Table of Contents

Introduction. 1

Components vs metanodes . 1

Creating components and metanodes . 2

Setup components and metanodes . 4

Setup components and metanodes . 4

Reconfigure components and metanodes . 4

Execution state of components and metanodes. 5

Change the flow variables scope in components. 8

Custom components configuration dialogs . 10

Configuration nodes . 11

Component configuration dialog. 16

Scripting Components . 17

Components composite views . 18

Widget nodes. 18

View nodes. 24

Refresh Button Widget node . 34

Re-execution of Widget nodes. 35

Interactive Widget nodes . 36

Layout of composite views . 39

Visual layout editor . 39

Enable the reporting function of a component . 42

Legacy flag. 42

Advanced layouting. 43

Node Usage tab . 48

Layout of configuration dialogs. 48

Streaming execution of components. 50

Default execution . 50

Streaming execution . 50

Error Handling. 53

Edit components description . 54

Sharing components . 55

Share components in local workspace. 56

Share components on the KNIME Hub . 56

Share components on the KNIME Business Hub . 57

Link type . 58

Use a shared component . 61

Edit the instance of a shared component. 61

Edit a shared component . 62

Update linked components . 62

Version a component shared to KNIME Hub . 62

Change component version to use . 63

Components for Data Apps . 65

Widget nodes. 65

Interactive Widget nodes and View nodes . 65

Re-execution and Refresh Button Widget node . 65

Introduction

In this guide we introduce components and metanodes.

Components and metanodes are both built from wrap workflows.

Components really are KNIME nodes that you create which bundle functionality, have their

own configuration dialog and their own composite views. Metanodes on the other hand are

containers of a part of your workflow, that help to build cleaner and structured nested

workflows.

In this guide, we explain how to create components and metanodes, how to create composite

views and configuration dialogs for components, and how to use them.

Components vs metanodes

Components are nodes that contain a sub-workflow, which lets you bundle functionality for

sharing and reusing. Components encapsulate and abstract functionality, can have their own

configuration dialog, and custom interactive composite views. You can use them to hide

some complexity in a workflow and you can also reuse them in other workflows or in

different parts of the same workflow, or you can share them with others via KNIME Server or

on the KNIME Hub. Additionally, components and their composite views are also used to

define pages in web application workflows, which once uploaded to KNIME Hub can be

deployed as Data Apps.

In contrast to components, metanodes are purely used to organize your workflows better:

you can take parts of a larger workflow and collapse it into a metanode, hiding that part of

the workflow’s functionality.

The main differences are:

• Custom configuration dialogs: components can have custom configuration dialogs,

which are managed through the Configuration nodes

• Custom composite views: components can also have composite views, which are

acquired from the interactive views of Widget nodes and View nodes inside the

component

• Sharing: components can be shared via KNIME Hub while metanodes can not

• Flow variable scope: the flow variable scope of a component is local which makes them

self-containing and less polluting to the parent workflow. A flow variable defined inside

a component is by default not available outside it, and a flow variable defined outside

the component is by default not available inside it.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 1

https://hub.knime.com

Creating components and metanodes

To encapsulate nodes into a component or collapsing a set of nodes into a metanode follow

these steps:

1. Select the nodes by either:

a. Dragging a rectangle with the mouse over the nodes in the workflow editor

b. Press and hold the "Ctrl" button and select the nodes clicking them

2. Create a component by:

a. Clicking the Create component button at the top of the Workflow Editor shown in

Figure 1

Figure 1. Create component button

b. Alternatively, right-click the selection and select either Create component or

Create metanode in the context menu shown in Figure 2

Figure 2. Creating a component or a metanode via right click

3. Give the component or metanode a name as shown in Figure 3

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 2

Figure 3. Giving a component or metanode a name

4. Press Enter or click the yellow tick on top to confirm the name. You will see the new

component or the new metanode in the workflow editor in place of the single nodes, as

shown in Figure 4

Figure 4. Newly created component and metanode in the workflow editor

Appropriate input and output ports will appear for the component and the metanode based

on the connections coming into and out of it.

Notice that collapsing nodes into a component or a metanode resets the nodes. Confirm with

OK in the dialog.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 3

Setup components and metanodes

You can change different settings for components and metanodes, like name, number of

input and output ports and their types. Moreover, you can change metadata, description and

customize the icon of a component. In this section we will explain you how to setup and

reconfigure components and metanodes.

Setup components and metanodes

You can change the settings of a component directly in the workflow editor.

Here you can:

• Change the component name by double-clicking on it.

• Add input and output ports

Click the Add Input Port or the Add Output Port button to right of the component or metanode

as shown in Figure 5

Figure 5. Adding input and output ports to a component or metanode

Reconfigure components and metanodes

• Remove input and output ports Remove existing input and output ports by clicking on

the port you want to remove. A Remove port button appears. Notice that you have to

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 4

remove from inside the component or metanode, all connections coming to and from

the port before you can remove it as shown in Figure 6.

Figure 6. Left: the lower output port still has a connection inside the component so the

trash bin button is inactive. Right: the lower output port without connection inside the

component

• Expand components and metanodes

To return the nodes within a component or a metanode into their original, uncollapsed state,

right-click the component or metanode and select Component → Expand component or

Metanode → Expand metanode in the context menu.

Execution state of components and metanodes

Similar to regular KNIME nodes, components can be configured and executed. How to create

a component configuration dialog will be explained in Custom components configuration

dialogs section. Components use a traffic light to indicate their execution state, same as for

the nodes as shown in the Workflow Editor & nodes section of the KNIME Workbench Guide.

In order to access data at the output port(s) every node of the sub-workflow enclosed in the

component needs to be successfully executed, hence have a "green" traffic light.

Metanodes can also be executed, meaning that the nodes building up the sub-workflow

contained by them, will be executed. However, since metanodes are only containers of parts

of the workflow they themselves can not be configured. Only when all of the nodes inside the

metanode are executed successfully, the metanode is executed successfully. A metanode

has two execution states: A tick indicates that the metanode is executed. A double arrow

indicates a running execution (shown in Figure 7, and the dot at the respective output ports).

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 5

https://docs.knime.com/2025-07/analytics_platform_user_guide/index.pdf#workflow-editor-nodes

Figure 7. Left: A successfully executed metanode; right: A metanode during a running

execution

Metanodes have three output states:

• Accessible ("green" dot), meaning that all the nodes building the sub-workflow branch

connected to that output port are successfully executed

• Connected but empty ("yellow" dot), meaning that the sub-workflow branch connected

to that output port did not produce an output

• Disconnected ("red" dot), meaning that the port is not connected to any sub-workflow’s

node.

This is shown in Figure 8

Figure 8. Three different states of the output ports of a metanode

Table 1 and Table 2 show the execution states in detail.

Table 1. The different execution and output states of components

Components

Icon
Output

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 6

Components

Successfully executed

Configured

All outputs connected

Execution failed

Contains unconnected output

Execution failed

One branch failed

Table 2. The different execution and output states of metanodes

Metanodes

Icon
Output

Successfully executed

All outputs available

All nodes of the sub-workflow are configured

All outputs connected

All nodes of the sub-workflow are executed

Contains unconnected output ("red" dot)

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 7

Metanodes

All nodes of the sub-workflow are executed

One branch failed and the corresponding output is empty

("yellow" dot)

Change the flow variables scope in
components

Flow variables that are created inside the component have a local scope and are only

available inside the component. Flow variables that are not created within the component are

only available outside the component.

To change this you need to specifically allow the flow variable to exit or enter the component:

1. Right-click the component in the executed state and choose Component → Open

component from the context menu

2. From inside the component right-click the Component Output node and select

Configure if you want a locally created flow variable to exit the component, or the

Component Input node to allow an externally created flow variable to be available

within the component

3. Add the desired flow variable in the Include column on the right pane in the window that

opens, shown in Figure 9.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 8

Figure 9. The Component Output node configuration dialog

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 9

Custom components configuration dialogs

Components can be designed in a way that the user can configure it from the outside,

without having to change the configuration of the nodes inside it, once the component is

saved and shared. This is done by using the Configuration Nodes which help to expose the

necessary settings to the outside, through the component configuration dialog.

In this section, we explain how to create a custom configuration dialog for a component

using Configuration nodes.

You can also change the order of the panes in the layout of the configuration dialogs. For

more details about how to do this please refer to the Layout of configuration dialogs section.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 10

Configuration nodes

A Configuration node can provide input parameters for other nodes in the workflow. If you

use one or more Configuration nodes inside a component, the configuration dialog of the

component will show all these configuration options you created inside it in its custom

configuration dialog.

Configuration nodes enable different types of user inputs such as string input, integer input,

selecting one value in a list and more. To access configuration nodes, navigate to the node

repository within the KNIME Analytics Platform. Type the key word "configuration" into the

search bar, as shown in Figure 10. You can narrow down the results by selecting the tag

"Configuration" below the search bar.

Figure 10. The Configuration nodes (Input and Selection) in the node repository

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 11

KNIME nodes are divided into two categories, which are explained in the Table 3.

Table 3. Configuration nodes

Icon Configuration node User input Output

Input Nodes

Boolean Booleans
Checked = true

Unchecked = false

String
Any user input is

accepted
String

Integer Integer values Integer

Integer Slider Value on a slider Integer

Double Floating point numbers Double

Date&Time

A date and time (as

string) (or a selected

date and time from the

calendar form).

String

Credentials

User credentials (user

name and password) for

later use in

authenticated nodes.

Credentials Flow

Variable

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 12

Icon Configuration node User input Output

Local File Browser
Select one or multiple

local files.

Table with paths to

selected items (as

knime:// protocol).

First path is also output

as flow variable.

Repository File Chooser

Select one or multiple

local files, workflows or

folders.

Table with paths to

selected items (as

knime:// protocol).

First path is also output

as flow variable.

List Box Separate string inputs
Data table with a

column of string values

Selection Nodes

Single Selection

Choice of the available

values. The available

selection depends on

the node’s

configuration.

String

Multiple Selection Multiple selections
Data table with a

column of selections

Column Selection Column name String

Value Selection Value in a column String

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 13

Icon Configuration node User input Output

Column Filter
Select columns from a

data table

Data table with selected

columns

Nominal Row Filter Value in a column

Data table with row

filtered according to the

selected value

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 14

Figure 11 shows, for example, the configuration dialog of the Value Selection Configuration

node, where you can define the input label, description, default selection option, and some

visual properties. Here, you can also define the name and default value of the output flow

variable, along with other settings to control the appearance of the custom dialog, if the

Configuration node is used inside a component, as explained in the next section.

Figure 11. Configuration dialog of the Value Selection Configuration node

Another node can access the flow variable output of a Configuration node, if the flow variable

output of the Configuration node is connected to it, as shown in Figure 12. The flow variable

created in the Configuration node as output, will then be used to overwrite the settings of the

connected node. To know how to do this, please refer to the Overwriting settings with flow

variables section of the KNIME Flow Control Guide. The value of the output of the

Configuration node is either its default value defined in the Configuration node configuration

dialog, or corresponds to the value provided by the user in the custom component

configuration dialog.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 15

https://docs.knime.com/2025-07/analytics_platform_flow_control_guide/index.pdf#overwriting-settings-with-flow-variables
https://docs.knime.com/2025-07/analytics_platform_flow_control_guide/index.pdf#overwriting-settings-with-flow-variables

Value Selection
Configuration

Row FilterComponent Input Component Output

Value Selection
Configuration

Row FilterComponent Input Component Output

Figure 12. Configuring a node with a value defined by a user

 This workflow is also available on the KNIME Hub.

Component configuration dialog

Configuration nodes that are contained in a component, represent a customized

configuration dialog.

Once you create a component, like the one shown in Figure 12, right-click the component and

select Configure from the context menu to open the configuration dialog, shown in Figure 13,

and configure the component’s parameters.

Figure 13. The component configuration dialog

You can also combine different Configuration nodes in one component and have a more

complex component configuration dialog, where different parameters can be configured.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 16

https://kni.me/w/migY33lOm5HHzTum

Scripting Components

KNIME provides a possibility to implement desired component functionality through scripting

by supporting a number of scripting frameworks. You will also have the possibility to

integrate dependencies with the scripted component. Given below are the nodes that can be

used to script a desired component.

Table 4. KNIME Scripting Nodes

Node Description

It offers a code editor for Python to process

any number and type of inputs into outputs.

KNIME executes the Python installation

configuration either from the node settings

and/or from KNIME Preferences.

It offers a code editor for R to process a

KNIME table. KNIME executes the R

installation configuration either in the node

settings and/or in KNIME Preferences.

It offers a code editor for JavaScript to

implement a customized view. Optionally,

you may feed in data to visualize it based on

your implementation. The node offers

checkboxes for a few dependencies (d3.js,

..) as well as a CSS editor.

It automatically installs the Conda

environment necessary for your component

to execute the downstream R/Python

nodes. The environment usually includes

the R/Python installation plus precise

versions of the libraries.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 17

Components composite views

Besides custom configuration dialogs, components can have their own custom composite

views. Composite views contain the interactive views of Widget nodes, and Interactive

Widget nodes and View nodes, that are part of a component.

All composite views on root level also define a web application, accessible

through KNIME Hub.

To inspect the composite view in KNIME Analytics Platform, as for any KNIME node that

outputs a view, right-click the component and select Open view after execution.

You can also customize the layout of the composite views. For more details about how to do

this please refer to the Layout of composite views section.

In the next sections we will explain how to use Widget nodes, Interactive Widget nodes and

View nodes to build a customized composite view.

Widget nodes

Widget nodes, similarly to Configuration nodes can provide input parameters for other nodes

in the workflow. However, unlike Configuration nodes, Widget nodes are shown as widgets in

the composite views. When inspecting the composite view in KNIME Analytics Platform in

the window that opens you can adjust the parameters, and on the right bottom corner of the

window:

• Click Apply to set these parameters for the current execution of the workflow

• Choose Apply as new default from the drop-down menu next to Apply button to set

these parameters as the new default parameters for the Widget nodes

• Click Close and, choose to either discard changes, apply settings temporarily or apply

settings as new default

• Choose to Close & Discard, Close & Apply temporarily or Close & Apply as new default

from the drop-down menu next to Close button.

Additionally, when the workflow is deployed to KNIME Hub, Widget nodes allow you to set

parameters for the workflow execution.

You can find all available Widget nodes in the node repository. Type the key word "widget"

into the search bar, as shown in Figure 14. You can narrow down the results by selecting the

tag "Widgets" below the search bar.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 18

https://docs.knime.com/2025-07/business_hub_user_guide/index.pdf

Figure 14. The Widget nodes in the node repository

You can also access the Widget nodes on the KNIME Quick Forms Extension Hub page.

The Widget nodes are divided into the following five categories:

• Input: you can use widgets in this category to input parameters of different type into the

workflow. For example you can input integers, strings, booleans, doubles, lists, but also

other formats like date&time or credentials. They are shown in Table 5.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 19

https://hub.knime.com/knime/extensions/org.knime.features.js.quickforms/latest

Table 5. Widget input nodes

Icon Widget node User input Output

Input Nodes

Boolean Booleans
Checked = true

Unchecked = false

String
Any user input is

accepted
String

Integer Integer values Integer

Double Floating point numbers Double

Date&Time

A date and time (as

string) (or a selected

date and time from the

calendar form).

String

Credentials

User credentials (user

name and password) for

later use in

authenticated nodes.

Credentials Flow

Variable

File Upload

Upload a file to the

server using a

temporary folder.

Path to the uploaded file

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 20

Icon Widget node User input Output

File Chooser

Select one or multiple

remote files, workflows

or folders.

Table with paths to

selected items (as

knime:// protocol).

First path is also output

as flow variable.

List Box Separate string inputs
Data table with a

column of string values

Slider Value on a slider Double

Molecule *

Molecule string in

specified format, e.g.,

SMILES notation

Molecule string in

specified format (can be

edited). Molecule can be

sketched.

* Requires extension(s)

• Selection: you can use the widgets in this category to select input values from an

available list of values. For example, you can choose a specific column from a data

table, multiple columns to include or exclude from a dataset or select a value of a

chosen column to filter a data table. You can also enable the choice of single or

multiple values from a list, or a single value from a single column of a data set. They are

shown in Table 6.

Table 6. Widget selection nodes

Icon Widget node User input Output

Selection Nodes

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 21

Icon Widget node User input Output

Single Selection

Choice of the available

values. The available

selection depends on

the node’s

configuration.

String

Multiple Selection Multiple selections
Data table with a

column of selections

Column Selection Column name String

Value Selection Value in a column String

Column Filter
Select columns from a

data table

Data table with selected

columns

Nominal Row Filter Value in a column

Data table with row

filtered according to the

selected value

• Output: you can use these widgets to either produce a link to download files or to

display images or dynamic text. They are shown in Table 7.

Table 7. Widget output nodes

Icon Widget node User input Output

Output Nodes

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 22

Icon Widget node User input Output

File Download
A flow variable storing

an absolute file path
String

Image Output KNIME Image
Image (SVG) or Image

(PNG)

Text Output Any text String or HTML content

• Filter: you can use these widgets to trigger interactive filter events in a layout of views.

In the next section these interactive widget nodes are explained in more details.

• Re-execution: you can use the Refresh Button Widget node to add a button widget with

configurable text to the composite view of the component. When the user clicks the

button it will emit reactivity events that trigger re-execution of the component

downstream nodes. In the Refresh Button Widget node section you will find more

detailed information on the functionality and outcome of the reactivity functionality of

the Refresh Button Widget.

You can arrange different Widget nodes in a composite view, enclosing them into a

component, where ideally you could adjust different parameters to be injected into the

workflow.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 23

View nodes

You can use View nodes to visualize your data as charts, plots, tables. You can choose

between two KNIME extensions to leverage their potential, as described in the following.

KNIME Views Extension

The KNIME Views Extension for the KNIME Analytics Platform provides nodes for creating

interactive visualizations within workflows. Interactivity between multiple views is currently

only possible for views coming from the KNIME Views Extension.

Type the key word "view" in the search bar. You can narrow down the results by selecting the

tag "Views" below the search bar, shown in Figure 15.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 24

https://hub.knime.com/knime/extensions/org.knime.features.base.views/latest

Figure 15. The View nodes in the node repository

You can also access the KNIME Views Extension on the KNIME Hub.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 25

https://hub.knime.com/knime/extensions/org.knime.features.base.views/latest

One example of a component made of four different View nodes is shown in Figure 16.

Figure 16. A sub-workflow of a component combining different View nodes

Once this component has been executed, right-click, select Component → Open view in the

KNIME Analytics Platform. An interactive dashboard like the one shown in Figure 17 will

appear. The layout can be adjusted as explained in the Layout of composite views section

and different elements can be added like text or images, with the use of Widget nodes.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 26

Figure 17. The composite view of a component combining different View nodes

Each node’s configuration dialog provides:

• A preview pane to adjust settings based on how they affect the visualization

• An input field where you can set a title

Missing, infinite or not a number (NaN) values are excluded in all View nodes

except for the Histogram node. You can choose different ways of handling

them in the configuration dialog.

The extension includes the nodes shown in Table 8. All nodes have the option to output a

rendered image of the generated visualization.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 27

Table 8. KNIME Views Extension nodes

Icon View node Input Output

Bar Chart Data table

containing the

categories and

values to be plotted

in a bar chart

Box Plot Data table

containing the

dimensions and

conditions to be

plotted in a box plot

Density Plot Data table

containing the

dimension and

condition column to

be plotted in a

density plot

Heatmap Data table

containing the

categories and

values to be plotted

in a heatmap

Histogram Data table

containing the

values to be plotted

in a histogram

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 28

Icon View node Input Output

Image View The image data to

display

Line Plot Data table with data

to display

Parallel Coordinates

Plot

Data table with data

to display

Pie Chart Data table

containing the

categories and

values to be plotted

in a pie chart

ROC Curve (Receiver

Operating

Characteristic

Curve)

Data table with data

to display

Scatter Plot Data table with data

to display

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 29

Icon View node Input Output

Scatter Plot Matrix Data table with data

to display

Stacked Area Chart Data table

containing the

categories and

values to be plotted

in a stacked area

chart

Statistics View Data table with data

to display

Sunburst Chart Data table with data

to display

hierarchical data in a

radial layout

Table View Data table with data

to display

Generic ECharts

View

Data table with data

to display

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 30

Icon View node Input Output

Text View No input port. Rich

text can be directly

added in the node

configuration dialog

KNIME Generic ECharts View Node

The Generic ECharts View node is a special View node that combines the functionality of

multiple views, e.g. Bar Chart, Line Plot, Scatter Plot and many more. It contains a script

editor where you can write your own JavaScript code to generate a view with the Apache

ECharts library. You can also use the templates provided in the node configuration dialog

(see Figure 18). In addition to the templates, more examples can be found on the Apache

ECharts website.

Figure 18. The Generic ECharts View node configuration dialog

Furthermore, when logged into KNIME Hub, you can utilize the KNIME AI Assistant to

generate JavaScript. To do so there is a button called 'Ask K-AI' in the node configuration

dialog. Clicking on it will open a dialog where you can ask the AI Assistant to generate a chart

for you, for instance, by typing in a question like "Generate a scatter plot for the two universes

in the input data", see Figure 19. You can then press 'Insert in editor' to insert the generated

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 31

https://echarts.apache.org
https://echarts.apache.org
https://echarts.apache.org/examples/en/index.html
https://echarts.apache.org/examples/en/index.html

code into the script editor. The view on the right side will automatically update. You can then

adjust the code to your needs or try a follow-up prompt.

For more information on the KNIME AI Assistant please refer to K-AI.

Upon utilizing the KNIME AI Assistant, be aware that the current code from the

editor, the input data’s schema, and the prompt are sent over the internet to the

configured KNIME Hub and OpenAI, which is a consideration for data privacy.

This transmission is necessary for the AI to tailor code suggestions accurately

to your script’s context and the data you are working with.

Figure 19. The Generic ECharts View node with a K-AI prompt

KNIME JavaScript Views Extension

You can use nodes from the JavaScript Views Extension to visualize your data as charts,

plots, tables, or visualize your own views generated from JavaScript code. The nodes are

available in the node repository. Type the key word "javascript" in the search bar. Narrow

down the results by selecting the tags "JavaScript" and "Views" below the search bar until the

node repository looks like Figure 20.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 32

https://hub.knime.com/knime/extensions/org.knime.features.ai.assistant/latest

Figure 20. The nodes from the JavaScript Views Extension in the node repository

You can also access the KNIME JavaScript Views Extension on the KNIME Hub.

These nodes can also be combined together in a component in order to build composite

views and dashboards.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 33

https://hub.knime.com/knime/extensions/org.knime.features.js.views/latest

Refresh Button Widget node

You can use the Refresh Button Widget node within a component to add a button widget with

configurable text to its composite view. When user clicks the resulting button in the

composite view a reactivity event will trigger re-execution of the component downstream

nodes. This will result in the update of the visualizations of the composite view

corresponding to the Widget and the View nodes that are in the branch downstream to the

Refresh Button Widget node. To use the node, connect the flow variable output port to the

nodes which should be re-executed. The downstream nodes of those connected nodes will

also be re-executed when the widget is clicked.

Please note that the Refresh Button Widget works in KNIME Analytics Platform only when

using the Chromium Embedded Framework as browser for displaying JavaScript views. In

case Chromium Embedded Framework is not set as the default you need to configure it. To

do so go to File > Preferences and find JavaScript Views under KNIME. Set the first pane to

Chromium Embedded Framework (CEF) Browser as shown in Figure 21.

Figure 21. Setting KNIME Analytics Platform preferences to use CEF Browser for displaying

Views

The re-execution functionality is available only if the legacy flag in the

Composite View Layout tab of the Node Usage and Layout window is

deactivated.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 34

The example in Figure 22 shows the workflow bundled in a component. The first branch

(yellow rectangle) has a Refresh Button Widget node, connected via flow variable port to a

Column Selection Widget node and a Box Plot node. The second branch instead does not

have the Refresh Button Widget node connected. In the resulting composite view is possible

to choose the columns to be plotted in the Box Plot views. When clicking the Refresh button

only the first Box Plot view is showing the selected column.

Figure 22. An example of a re-executable branch

Re-execution of Widget nodes

Complementary to the functionality of the Refresh Button Widget node it is also possible to

configure some of the Widget nodes (Selection Widget nodes and Boolean Widget node) so

that the change in their value in the composite view upon user interaction will directly trigger

re-execution of the component downstream nodes. This will result in the update of the

visualizations of the composite view corresponding to the Widget and the View nodes that

are in the branch downstream to the re-executable Widget node. In order to activate this

option open the Widget node configuration dialog, go to Re-execution tab, and check the

option Re-execution on widget value change, as shown in Figure 23.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 35

Figure 23. The re-execution tab of a re-executable Widget node

When the re-execution option is selected the Widget node will have the icon on the right

upper corner of the node, as shown in Figure 24.

Single Selection
Widget

Figure 24. The re-executable Widget node

Please note that the re-execution of Widget nodes works in KNIME Analytics

Platform only when using the Chromium Embedded Framework as browser for

displaying JavaScript views. In case Chromium Embedded Framework is not

set as the default you need to configure it. To do so go to File > Preferences and

find JavaScript Views under KNIME. Set the first pane to Chromium Embedded

Framework (CEF) Browser as shown in Figure 21.

The re-execution functionality is available only if the legacy flag in the

Composite View Layout tab of the Node Usage and Layout window is

deactivated.

Interactive Widget nodes

Interactive Widget nodes are special Widget nodes that can be combined together with View

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 36

nodes in order to build composite views where you are allowed to interactively filter the data

visualized in the View node(s) connected to them, acting on the different elements which are

integrated in the composite view.

Interactive Range Slider Filter Widget

This Interactive Widget node shows a slider in a composite view. You can define the column

to be filtered according to the slider and the range, together with different configurations and

settings, in the node configuration dialog.

An example about how to use this Interactive Widget node is available on the KNIME Hub and

is shown in Figure 25.

Interactive Range
Slider Filter WidgetComponent Input Component OutputScatter PlotColor Manager
Interactive Range

Slider Filter WidgetComponent Input Component OutputScatter PlotColor Manager

Figure 25. An example component where the Interactive Range Slider Filter node is used

Two snapshots of the interactive composite view are shown in Figure 26. The range of values

that are filtered and plotted is adjusted with the slider.

Figure 26. Two possible snapshots of the interactive composite view of a component using

Interactive Range Slider Filter node

Interactive Value Filter Widget

This Interactive Widget node shows a filter in a composite view. You can define the column

to which the values are filtered. You can also have different configurations for this widget like

choose a single or multiple values, and other settings, that you can configure in the node

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 37

https://kni.me/w/migY33lOm5HHzTum

configuration dialog.

An example about how to use this Interactive Widget node is available on the KNIME Hub and

is shown in Figure 27.

Component Input Component Output
Interactive Value

Filter Widget Scatter PlotColor ManagerComponent Input Component Output
Interactive Value

Filter Widget Scatter PlotColor Manager

Figure 27. An example component where the Interactive Range Slider Filter node is used

Two snapshots of the interactive composite view are shown in Figure 28. The values of the

chosen column that are included or excluded and plotted is adjusted with the include/exclude

element on the top.

Figure 28. Two possible snapshots of the interactive composite view of a component using

Interactive Value Filter node

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 38

https://kni.me/w/migY33lOm5HHzTum

Layout of composite views

Any component that contains at least one Widget or JavaScript view node can have a layout

defined. The layout can be edited within the Composite View Layout tab of the Node Usage

and Layout window.

To access the layout editor you can either:

• Open the component and click the Open layout editor button, as shown in Figure 29.

Figure 29. The layout editor button in the toolbar

Visual layout editor

The visual layout editor allows you to create and adjust layouts using a drag & drop grid.

• A layout consists of one or more rows. Each row can have up to twelve columns.

• A column can be resized when there is more than one column in a row

• One or more views can be added to a column

• By default the position of widgets and views in the custom view follows the position of

the corresponding nodes in the component sub-workflow, from top to bottom.

The visual layout editor, shown in Figure 30, consists of a left panel which shows a list of all

Widget and View nodes in your component that have not yet been added to the layout and an

interactive preview of the layout on the right.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 39

Figure 30. The visual layout editor of a component

To add a view, drag it from the left panel (1) to the desired position in the layout preview.

To add a column, click the '+' button (2) in the layout preview.

To resize a column, click and move the resize handle between columns (3).

To add a row, drag a row template (4) from the left panel to the desired position in the layout

preview. You can choose between different templates, e.g. 1-column, 2-column, 3-column or

you can add and remove columns later on.

To delete a view, column or row use the trash bin button (5). This is only available for

columns and rows when they are empty, i.e. do not contain widgets or views.

To move a view into another column drag it to the layout preview. Complete rows can also be

moved by dragging.

Note that nesting is possible. Columns can contain rows as well as views, those nested rows

can contain columns, rows, and views, and so on.

You can also adjust the height of the views. Each view has default sizing settings which can

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 40

be changed via the cog icon (6) in the layout preview. You can choose between automatic

height based on the content of the view or aspect ratio sizing (16:9, 4:3 or square). When

using automatic height it is possible to define minimal and maximal pixel sizes.

If you have switchable views or widgets within your component, for example if you are using

a Refresh Button Widget node combined with IF and CASE Switches, you need to insert all the

switchable views and widgets in your layout by positioning them within the same cell of the

Composite View Layout, as shown in Figure 31.

Figure 31. The visual layout editor of a component with switchable views

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 41

https://docs.knime.com/2025-07/analytics_platform_flow_control_guide/index.pdf#if-and-case-switches

Layouting composite views with switchable views

When building a component to be deployed as a page of a Data App you might want to give

the final Data App user the possibility to choose the type of visualization they want to see in a

specific position of the page. To do this you can use for example IF and CASE Switches in

order to enable the user to alternatively select a visualization. When building such an

application you need to insert all the View or Widget nodes that you might want to show in a

specific position on the page.

Enable the reporting function of a component

The KNIME Reporting Extension KNIME Reporting Extension allows you to create and share

static reports based on the results of the component’s composite view of your workflows.

To use this functionality, navigate to the left side of the Composite View Layout tab of the

Node Usage and Layout window and check the Enable Reporting button, number (7) in Figure

30.

See the KNIME Reporting Guide to learn more about the reporting function in the KNIME

Analytics Platform.

Legacy flag

On the left side of the Composite View Layout tab of the Node Usage and Layout window a

Use legacy mode button, number (8) in Figure 30, is available.

The Widget nodes user interface has been improved starting from KNIME Analytics Platform

version 4.2.

When creating components with KNIME Analytics Platform version 4.2 the legacy mode is

deactivated by default. This means that the composite views are visualized with the new

improved user interfaces for the Widget nodes.

Instead, for components that have been created using Widget nodes in KNIME Analytics

Platform version 4.1 and earlier, the legacy mode is activated by default. The composite

views will have the previous user interface as in KNIME Analytics Platform version 4.1 and

earlier.

It is always possible to check/uncheck the Use legacy mode checkbox to visualize the

composite views with old/new Widget node style. This is found in the Composite View Layout

tab of the layout editor for the component view, number (8) in Figure 30.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 42

https://docs.knime.com/2025-07/analytics_platform_flow_control_guide/index.pdf#if-and-case-switches
https://hub.knime.com/knime/extensions/org.knime.features.reporting2/latest
https://docs.knime.com/2025-07/analytics_platform_components_guide/index.pdf#components-composite-views
https://docs.knime.com/2025-07/analytics_platform_reporting_guide/index.pdf#introduction

Alternatively, in the Advanced Composite View Layout tab of the layout editor, this property

can be enabled/disabled on a node-by-node basis (see (8) and (9) in the next section).

Advanced layouting

The layout structure is saved in a JSON format which advanced users can edit directly in the

Advanced Composite View Layout tab.

An example of JSON format generated by the visual layout editor is shown in Figure 32.

[06 component layouting editor advanced] | 06_component_layouting_editor_advanced.svg

Figure 32. Component advanced layouting in JSON Format

Row (1)

A row is the outer most element that can be defined and is the first element inside the layout

container. The JSON structure’s outer layer is an array of rows. A row contains a number of

layout-columns.

To further customize a row you can add optional fields. With additionalClasses you can

provide an array of class names to append to the created HTML row element,

additionalStyles (2) is an option to directly insert CSS style commands on the element. For

example, to create a visual separator between one row and the next, you can add a bottom

border:

"additionalStyles" : ["border-bottom: thin solid grey;"]

The grey line that appears in the custom view output of the component is shown in Figure 33.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 43

Figure 33. Custom view output of a component with additional styling

Column (3)

A column is a layout element inside a row which determines the width of its components. To

define a width, use a number between 1 and 12. 12 means taking up 100% of the width,

whereas 6 would be 50% of the width. In this way it is possible to define a layout with

components side by side by providing their relative widths. For example, if three components

are to be laid out horizontally with equal column widths use a row with three columns, each

of width 4. If the sum of widths for a particular row is larger than 12, the extra columns are

wrapped onto a new line.

Responsive layouts (4)

It is also possible to define multiple widths of the columns so that they can adapt to the

screen size. With this option responsive layouts can be achieved.

To define the responsive width of a column, use at least widthXS and one or more of the

following fields: widthSM, widthMD, widthLG.

The content of a column can be an array of one of any of the following: . Another set of rows,

providing the possibility to create nested layouts . Regular HTML content, to insert plain

HTML elements into the layout . A node reference to embed the contents of a JavaScript-

enabled KNIME node.

As for rows, it is also possible to further customize the column using the optional fields

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 44

additionalClasses and additionalStyles.

HTML content

It is possible to include plain HTML into the layout by placing a content element of type html

inside a column. To insert the content a single field value is used.

For example:

[...]
"content":[{
 "type":"html",
 "value":"<h2 >Title defined in layout</h2>"
 }]
[...]

View content (5)

To embed the contents of a KNIME node inside the layout, you can use a content element

with type view. The element has quite a few ways to customize the sizing and behavior of the

content, which are explained in Table 9.

Referencing the node is done by the field nodeID (6), which takes the ID-suffix of the node as

a string argument. If nodes exist inside the component which are not referenced by the

layout, a warning message appears underneath the editor. Errors will also be issued for

referencing nodes twice or referencing non-existing nodes.

The content of each is wrapped in its own iframe element, allowing to encapsulate the

implementation and avoid reference and cross-scripting issues. As iframe elements do not

adapt to the size of their content automatically, you need to resize them to achieve the

desired behavior. To achieve this result you have the following options:

1. Size-based methods: This method uses an iframe-resizer library to resize the iframe

according to the size of its contents. You will need to explicitly or implicitly set a

concrete size for the content. You can determine the size using different approaches,

as explained on the iframe-resizer GitHub page. Size-based resize methods all start

with the prefix View in the JSON structure.

2. Aspect-ratio based methods: If a node view is set to adapt to its parent size, rather then

implicitly providing a size, the size-based methods will either not work properly. To

allow these views to take up an appropriate amount of space in the layout an aspect

ratio setting can be used. Here the width is taken as 100% of the horizontal space

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 45

https://davidjbradshaw.github.io/iframe-resizer/
https://github.com/davidjbradshaw/iframe-resizer#heightcalculationmethod

available at that position in the layout and the height is calculated according to the

given ratio. Aspect-ratio based resize methods start with the prefix aspectRatio in the

JSON structure.

3. Manual method: You can also trigger manually resize events at appropriate times. This

requires the implementation of the node to make the appropriate resize calls itself.

In the table below a list of available fields to personalize the view content (7) is shown.

Table 9. Available fields to personalize the view content

Field name Explanation / Possible Values

nodeID ID-suffix of referenced node

minWidth Constrain the size of the iframe by setting a minimum width in

pixels.

minHeight Constrain the size of the iframe by setting a minimum height in

pixels.

maxWidth Constrain the size of the iframe by setting a maximum width in

pixels.

maxHeight Constrain the size of the iframe by setting a maximum height in

pixels.

resizeMethod The resize method used to correctly determine the size of the

iframe at runtime. Can be any of the following values:

viewBodyOffset, viewBodyScroll, viewDocumentElementOffset,

viewDocumentelementScroll, viewMax, viewMin, viewGrow,

viewLowestElement, viewTaggedElement, viewLowestElementIEMax,

aspectRatio4by3, aspectRatio16by9, aspectRatio1by1, manual

autoResize Boolean only working with size based resize methods. Use this to

enable or disable automatic resizing upon window size or DOM

changes. Note that the initial resize is always done.

resizeInterval Number only working with size based resize methods. Sets the

interval to check if resizing needs to occur. The default is 32 (ms).

scrolling Boolean only working with size based resize methods. Enables or

disables scroll bars inside iframe. The default is false.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 46

Field name Explanation / Possible Values

sizeHeight Boolean only working with size based resize methods. Enables or

disables size adaption according to content height. The default is

true.

sizeWidth Boolean only working with size based resize methods. Enables or

disables size adaption according to content width. The default is

false.

resizeTolerance Number only working with size based resize methods. Sets the

number of pixels that the content size needs to change, before a

resize of the iframe is triggered. The default is 0.

additionalClasses Array of additional classes added to the HTML container element.

additionalStyles Array of additional CSS style declaration added to the HTML

container element.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 47

Parent legacy mode (8) (9)

The parentLayoutLegacyMode (8) is activated (true) to allow all Widget nodes contained in

the component to use the legacy mode. Each individual Widget node can also be unset from

the legacy mode setting the option (9) useLegacyMode to false.

Node Usage tab

The first tab of the layout editor is the Node Usage tab. Here you can choose which Widget

nodes to show in the composite view checking/unchecking them in the

WebPortal/Component View column.

It is best practice to avoid the usage of Quickform nodes and use instead Configuration

nodes and Widget nodes. However, in case you are using Quickform nodes in your

components and you want to hide them you can do it in the Node Usage tab.

Check or uncheck the node in the WebPortal/Component View column to show it or hide it

from the composite view. Check or uncheck the node in the Component Dialog column to

show it or hide it from the configuration dialog.

Layout of configuration dialogs

The last tab of the layout editor is the Configuration Dialog Layout and an example is shown

in Figure 34.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 48

Figure 34. The Configuration Dialog Layout tab of the layout editor

Here, you will find all the Configuration nodes that are part of the component. You can easily

drag and drop them to resort their position which then they will have in the component

configuration dialog.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 49

Streaming execution of components

You can define the mode of execution of components, e.g. in which order and how the data

are passed from one node to another in the sub-workflow. After installing the KNIME

Streaming Execution (Beta) extension, in each component configuration dialog you can find a

Job Manager Selection tab. Not all nodes support streaming execution. However, streaming

execution can be applied to entire sub-workflows inside a component. Notice that the non-

streamable nodes can still be part of a sub-workflow inside a component, which is executed

in the streaming mode. They will simply be executed in the default execution mode.

The KNIME Streaming Execution (Beta) is an extension available under KNIME

Labs Extensions. Install it by navigating to Menu - > Install extensions.

The execution can be performed in default or streaming mode which are described in the

next sections.

Default execution

In the default execution mode, the operations in a workflow are executed node by node. Data

are passed from one node to another after the entire input data of a node has been

processed. The dataset passed to the next node is the intermediate output table, which you

can inspect by opening the output table of a node in the middle of a workflow.

If you open the Job Manager Selection tab in any configuration dialog, and see the job

manager selection <<default>>, then the node operation is executed according to the default

execution mode.

Streaming execution

In the streaming execution mode, data is passed from one node to another as soon as it is

available. That is, all data do not have to be processed at once, but they can be divided into a

number of batches which are streamed one by one. Therefore, the streaming execution mode

leads to a faster in-memory execution because only the rows in transit are concerned and

intermediate tables are not stored.

To switch from default to streaming execution select Simple Streaming under the Job

Manager Selection tab in the component or node configuration dialog. If the streaming

execution option is not available for the node you will only see the <<default>> option in the

menu.

Here, for streaming execution mode, you can also choose the size of the batch to be

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 50

streamed, as shown in Figure 35.

Larger values will reduce synchronization, with better runtime, while small

values will assure that less data is in transit.

Figure 35. Streaming execution mode and chunk size selection

Streaming execution of a component

If you use the streaming mode to execute a component, the sub-workflow inside it is always

executed entirely. The intermediate output tables of the nodes inside the component are not

available, because they are not stored. Each batch of data is streamed one by one through

the streamable nodes of the sub-workflow. If they reach a non-streamable node they will be

stored there until all the batches have been streamed. Then they are again divided into

batches and passed to the next streamable node(s).

The component and the streamable nodes in the component sub-workflow show a dashed

black arrow on the right bottom corner, while the nodes show an X, if they are not, as shown

in Figure 36. The numbers that appear above the connection between nodes refer to the

number of records that have passed that particular connection.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 51

Figure 36. Streaming execution inside a component

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 52

Error Handling

Error handling is a significant issue that needs to be addressed while building a workflow.

While executing a workflow, you might encounter various errors. For instance, a failing

connection to a remote service, the invocation of a non-accessible database etc. It is

necessary to provide an error handling method that alerts if a node execution fails. While

building a component, Breakpoint node as shown in Figure 37 can be used for error handling.

The node can be used to detect whether the input or configurations of the component satisfy

the minimum requirements. It can also be configured to provide a customized error message

to the user about what should be fixed if the component execution fails. Thus, when

specified conditions are not met the error message appears on the node and on the outside

of the component.

Figure 37. Breakpoint Node

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 53

https://docs.knime.com/2025-07/analytics_platform_flow_control_guide/index.pdf#loops

Edit components description

As each component is a real KNIME node you can also change its description, provide a

name and a description for output and input ports, and customize the component icon.

To do this open the component by either right-clicking it and going to Component → Open

component in the context menu or "ctrl" + double-clicking it. Open the Description tab, shown

in Figure 38, from the side panel navigation.

Figure 38. The description panel of a component

Click on the pen icon on the right upper corner to change:

• Description: you can insert here a description of the component

• Type and icon: you can select a a square image file, png format of a minimum size of

16x16, and select the type from the drop-down menu, shown in Figure 39, to setup

background color.

• External resources: you can add links to useful resources.

• Tags: add meaningful tags to the component

• Name and Description of input and output ports: the name of input and output ports will

also be visible on the input and output ports hover of the component in the workflow

editor.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 54

Figure 39. Changing the description panel of a component

Sharing components

Components encapsulate functionalities that can be reused as your personal customized

KNIME nodes, to perform tasks that you often repeat, or you can simply store them for

further reuse for yourself. They can also be shared with others via KNIME Hub and KNIME

Server.

After you create a component in a workflow, if you would like to reuse it in some other

workflow you could copy paste it in to the new workflow. However, in this way, changes to

the component in one workflow are not triggered to the others. You can obtain changes to

the component to be applied to the others by sharing and linking components.

To share a component, right-click it, select Component → Share from the context menu, and

choose the destination for the shared component in the window that opens, shown in Figure

40.

Here you can choose:

• The mountpoint where to share the component

• To include or exclude the input data eventually present with the component.

Please be aware that if input data are included they will be accessible to

everyone who has access to the component itself.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 55

Figure 40. The Save As Shared Component window

Share components in local workspace

If you choose to save a component in your local workspace you can have access to that

component from your local KNIME Analytics Platform installation.

Share components on the KNIME Hub

You can also save and share components in the KNIME Hub. Here you can share into a

private space, having therefore access to them logging in to your KNIME Hub profile, or into a

public space, sharing your components with the KNIME Community.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 56

https://hub.knime.com/site/about

Share components on the KNIME Business Hub

Similar to the KNIME Community Hub, you can also save and share components on the

KNIME Business Hub. Here you can save the component to a team space and share it with

the members of your team.

To save a linked component to the KNIME Business Hub, right-click it, select Component →
Share from the context menu. In the Save As Shared Component window, select your

Business Hub instance and the space where the component will be saved, as shown in Figure

41.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 57

https://www.knime.com/knime-business-hub

Figure 41. The KNIME Business Hub instance in the Save As Shared Component window

Link type

The link type defines how a workflow looks for the shared component when checking for

updates.

After choosing the destination of your component, a dialog opens asking you to choose for

the link type you want to use.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 58

Upon saving a linked component locally, you have the following four possibilities:

• Create absolute link: the workflow connects to the absolute location of the shared

component

• Create mountpoint-relative link: the workflow connects to the shared component based

on the folder structure under which mountpoint the workflow lives. If you deploy a

workflow to a KNIME Server you have to deploy the shared component as well, and

keep the path from the mountpoint to the component the same.

• Create workflow-relative link: the connection between the shared component and a

workflow where an instance of it is used is based on the folder structure between the

workflow and the shared component

• Don’t create link with shared instance: creates a shared component but does not link

the current instance to it.

If you share a component on the KNIME Server, the KNIME Community Hub or the KNIME

Business Hub, you can only choose between creating an absolute link or not creating a link at

all, as indicated by the Link Shared Component dialog shown in Figure 42.

Figure 42. The Link Shared Component dialog of a component about to be shared to a KNIME

Server or Hub instance

After selecting the proper link type click OK and the shared component appears in KNIME

Explorer within the folder it was saved to, as shown in Figure 43.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 59

Figure 43. A shared component saved in the local workspace

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 60

Use a shared component

To use a shared component in a workflow, you can drag and drop it into the workflow editor.

An arrow on the bottom left corner, shown in Figure 44 indicates that the component is an

instance of a shared component. You can use the component as a KNIME node, using the

functionalities that have been enveloped into it, like configure it or visualize its output(s) or

interactive views.

Figure 44. The instance of a shared component in a workflow

Edit the instance of a shared component

To check the link type of a certain instance or to customize it for a specific instance, right-

click the instance and choose Component → Change link type from the context menu. The

dialog shown in Figure 45 will open. There, you can choose the new type of link.

Figure 45. Change the link type of an instance of a shared component

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 61

When you open an instance of a shared component, a blue bar indicates that you cannot

make any changes to the current instance of the component.

To be able to edit the instance, you must first unlink it from the shared component. Right-

click the instance and select Component → Disconnect link.

After disconnecting the component, you can resume making changes to it by clicking

Component → Open. To save these changes to the previously created shared component,

right-click the edited component instance and select Component → Share. Then select the

folder in which the shared component is located and overwrite it. You also have the option of

saving the changes to a new component with a different name.

To verify that the current instance of the component in use is the latest of the linked shared

component, right-click the current instance and select Component → Update component. If

updates are available, you will be notified when opening a tab with a workflow where an

instance of the component is used. Click Update to update the current instance of the shared

component.

Edit a shared component

You can edit a shared component by opening it directly from the space explorer. You can now

modify the sub-workflow contained in the component by adding or deleting nodes, changing

the parameters of individual nodes, or changing the layout of composite visualizations.

Update linked components

You can choose to automatically update the linked components that are eventually reused in

a workflow. The first time you open a workflow that uses an instance of a shared component,

you will be prompted to choose whether to check for updates to these components.

Version a component shared to KNIME Hub

You can create versions of your shared components so that you can return to a specific

saved version at any point in the future to download the item in that specific version.

Versioning a component works like versioning a workflow, as detailed in the KNIME Business

Hub User Guide.

 To version a component, it must first be shared on the KNIME Hub.

Once you have shared your component, access its location on the KNIME Hub. Alternatively,

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 62

https://docs.knime.com/2025-07/business_hub_user_guide/index.pdf#versioning

you can access the component through the KNIME Analytics Platform. Navigate to the

component in the space explorer, right-click it, and select Open in Hub.

On the component Hub page, click History. A panel opens on the right, where you can see the

unversioned changes to the component, as shown in Figure 46.

Figure 46. Component history panel

To create a new version, make sure you are signed in, then click Create version. You can then

name the version and add a description. After you click Create, the new version of your

component appears in the panel on the right. Any future edits to the component will appear

there as unversioned changes, which can then be versioned again, as described above.

Change component version to use

This feature is currently available only in the classic user interface. Switch to

classic user interface by clicking Menu > Switch to classic user interface.

When working with a linked component in a specific workflow, you may want to specify

which version to use in the current workflow. This is possible if the component is uploaded to

a KNIME Hub instance and has different versions. To do so, right-click the component and

select Component → Change KNIME Hub Item Version. In the Select KNIME Hub Item Version

dialog, you can choose between three options, as shown in Figure 47.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 63

Figure 47. Select KNIME Hub Item Version dialog

Specific version

If you select this option, the component instance is set to one specific version created on the

Hub. In the current workflow, it will not be affected by any future changes.

Latest version

The component instance will be updated to the latest version created on the KNIME Hub.

Unversioned changes are not included.

Working area

The component instance is updated whenever a change is made to the linked component.

These changes do not need to be versioned yet.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 64

Components for Data Apps

When you upload a workflow containing components to KNIME Hub, create a Data app

deployment and execute it you are guided through the process in one or more pages. Each

page corresponds to a component in the root level of the workflow, containing Widget nodes

and View nodes.

Widget nodes

You can use Widget nodes inside a component to build a composite view that will be

visualized as a web page on KNIME Hub. The use of Widget nodes is meant to set specific

configurations, e.g. select a value from a specific column of a data table to filter by. In the

web page you will be then able to enter values for specific parameters before proceeding

with the workflow execution. These values are injected into the workflow, and used to

parameterize its execution.

Interactive Widget nodes and View nodes

You can use Interactive Widget nodes and View nodes inside a component to build a

composite view that will be visualized as a web page on KNIME Hub. The use of View nodes

is meant to build specific visualizations, like tables, charts and plots, which are shown as a

web page. Interactive Widget nodes can be also arranged together with the View nodes in

order to interact with the visualizations directly on the web page.

Re-execution and Refresh Button Widget node

You can use Refresh Button Widget node inside a component to built a composite view that

will be visualized as a interactively re-executable web page on KNIME Hub. The Refresh

Button Widget node is used to add a button visual element to the data application that is able

to re-execute specific nodes thus refreshing the desired visualizations.

You can find additional explanation on how to use KNIME Hub and how to build specific

workflows in the Data Apps section of the KNIME Business Hub User Guide.

KNIME Components Guide

© 2025 KNIME AG. All rights reserved. 65

https://docs.knime.com/2025-07/business_hub_user_guide/index.pdf#data-apps
https://docs.knime.com/2025-07/business_hub_user_guide/index.pdf

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	KNIME Components Guide
	Table of Contents
	Introduction
	Components vs metanodes

	Creating components and metanodes
	Setup components and metanodes
	Setup components and metanodes
	Reconfigure components and metanodes
	Execution state of components and metanodes

	Change the flow variables scope in components
	Custom components configuration dialogs
	Configuration nodes
	Component configuration dialog

	Scripting Components
	Components composite views
	Widget nodes
	View nodes
	Refresh Button Widget node
	Re-execution of Widget nodes
	Interactive Widget nodes

	Layout of composite views
	Visual layout editor
	Enable the reporting function of a component
	Legacy flag
	Advanced layouting
	Node Usage tab
	Layout of configuration dialogs

	Streaming execution of components
	Default execution
	Streaming execution

	Error Handling
	Edit components description
	Sharing components
	Share components in local workspace
	Share components on the KNIME Hub
	Share components on the KNIME Business Hub
	Link type
	Use a shared component
	Edit the instance of a shared component
	Edit a shared component
	Update linked components
	Version a component shared to KNIME Hub
	Change component version to use

	Components for Data Apps
	Widget nodes
	Interactive Widget nodes and View nodes
	Re-execution and Refresh Button Widget node

