
Create a New Java based KNIME

Extension
KNIME AG, Zurich, Switzerland

Version 5.2 (last updated on 2023-11-22)

Table of Contents

Introduction. 1

Set up a KNIME SDK. 2

Create a New KNIME Extension Project . 3

The KNIME Node Wizard . 3

Test the Example Extension . 8

Project Structure. 9

Number Formatter Node Implementation. 12

Deploy your Extension . 15

Option 1: Local Update Site (recommended). 15

Option 2: dropin . 19

Further Reading . 21

Introduction

This quickstart guide describes how to create a new KNIME Extension in Java, i.e. write a

new node implementation to be used in KNIME Analytics Platform. You will learn how to set

up a KNIME SDK, how to create a new KNIME Extension project, how to implement a simple

manipulation node, how to test the node, and how to easily deploy the node in order to make

it available for others. Publishing the extension is explained in detail in the following guide:

Publish Your Extension on KNIME Community Hub

For this purpose, we created a reference extension you can use as orientation. This KNIME

Extension project can be found in the org.knime.examples.numberformatter folder of the

knime-examples GitHub repository. It contains all required project and configuration files and

an implementation of a simple Number Formatter example node, which performs number

formatting of numeric values of the input table. We will use this example implementation to

guide you through all necessary steps that are involved in the creation of a new KNIME

Extension.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 1

https://docs.knime.com/2023-12/development_contribute_extension/index.pdf
https://github.com/knime/knime-examples/tree/master/org.knime.examples.numberformatter
https://github.com/knime/knime-examples

Set up a KNIME SDK

In order to start developing KNIME source code, you need to set up a KNIME SDK. A KNIME

SDK is a configured Eclipse installation which contains KNIME Analytics Platform

dependencies. This is necessary as Eclipse is the underlying base of KNIME Analytics

Platform i.e. KNIME Analytics Platform is a set of plug-ins that are put on top of Eclipse and

the Eclipse infrastructure. Furthermore, Eclipse is an IDE, which you will use to write the

actual source code of your new node implementation.

To set up your KNIME SDK, we start with an "Eclipse IDE for RCP and RAP Developers"

installation (this version of Eclipse provides tools for plug-in development) and add all KNIME

Analytics Platform dependencies. In order to do that, please follow the SDK Setup

instructions. Apart from giving instructions on how to set up a KNIME SDK, the SDK Setup will

give some background about the Eclipse infrastructure, its plug-in mechanism, and further

useful topics like how to explore KNIME source code.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 2

https://en.wikipedia.org/wiki/Integrated_development_environment
https://github.com/knime/knime-sdk-setup

Create a New KNIME Extension Project

After Eclipse is set up and configured, create a new KNIME Extension project. A KNIME

Extension project is an Eclipse plug-in project and contains the implementation of one or

more nodes and some KNIME Analytics Platform specific configuration. The easiest way to

create a KNIME Extension project, is by using the KNIME Node Wizard, which will

automatically generate the project structure, the plug in manifest and all required Java

classes. Furthermore, the wizard will take care of embedding the generated files in the

KNIME framework.

The KNIME Node Wizard

1. Install the KNIME Node Wizard

Open the Eclipse installation wizard at Help → Install New Software… , enter the

following update site location: https://update.knime.com/analytics-platform/5.2/ in

the location box labelled Work with:.

Hit the Enter key, and put KNIME Node Wizard in the search box. Tick the KNIME Node

Wizard under the category KNIME Node Development Tools, click the Next button and

follow the instructions. Finally, restart Eclipse.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 3

Figure 1. The KNIME Node Wizard installation dialog.

2. Start the KNIME Node Wizard

After Eclipse has restarted, start the KNIME Node Wizard at File → New → Other… ,

select Create a new KNIME Node-Extension (can be found in the category Other), and

hit the Next button.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 4

Figure 2. The KNIME Node Wizard start dialogs.

3. Create a KNIME Extension Project

In the Create new KNIME Node-Extension dialog window enter the following values:

◦ New Project Name: org.knime.examples.numberformatter

◦ Node class name: NumberFormatter

◦ Package name: org.knime.examples.numberformatter

◦ Node vendor: <your_name>

◦ Node type: Select Manipulator in the drop down menu.

Replace <your_name> with the name that you like to be the author of the created

extension. Leave all other options as is and click Finish.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 5

Figure 3. The KNIME Node Wizard dialog.

After some processing, a new project will be displayed in the Package Explorer view of

Eclipse with the project name you gave it in the wizard dialog.

Make sure that the checkbox Include sample code in generated

classes is checked. This will include the code of the aforementioned

Number Formatter node in the generated files.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 6

Figure 4. A view of Eclipse after the KNIME Node Wizard has run.

In the Package Explorer view of Eclipse (left side) you should now see three projects.

The two projects org.apache.xmlbeans and org.knime.sdk.setup which you imported

in the SDK Setup, and the project org.knime.examples.numberformatter that you just

created using the KNIME Node Wizard.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 7

https://github.com/knime/knime-sdk-setup

Test the Example Extension

At this point, all parts that are required for a new KNIME Extension are contained in your

Eclipse workspace and are ready to run. To test your node, follow the instructions provided in

the Launch KNIME Analytics Platform Section of the SDK Setup. After you started KNIME

Analytics Platform from Eclipse, the Number Formatter node will be available at the root level

of the node repository. Create a new workflow using the node (see Figure below), inspect the

input and output tables, and play around with the node.

Figure 5. KNIME Analytics Platform development version started from Eclipse showing an

example workflow. The Number Formatter node contained in the Eclipse workspace is

displayed at the bottom of the node repository.

The node will perform simple rounding of numbers from the input table. To change the

number of decimal places the node should round to, change the digit contained in the format

String that can be entered in the node configuration (e.g. %.2f will round to two decimal

places,the default value is %.3f). After you are done, close KNIME Analytics Platform.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 8

https://github.com/knime/knime-sdk-setup

Project Structure

Next, let’s review the important parts of the extension project you’ve just created. First, we’ll

have a look at the files located in org.knime.examples.numberformatter.

The files contained in this folder correspond to the actual node implementation. There are

four Java classes implementing what the node should do, how the dialog and the view looks

like, one XML file that contains the node description, and an image which is used as the node

icon (in this case a default icon) displayed in the workflow view of KNIME Analytics Platform.

Generally, a node implementation comprises of the following classes: NodeFactory,

NodeModel, NodeDialog, NodeView. In our case, these classes are prefixed with the name you

gave the node in the KNIME Node Wizard, i.e. NumberFormatter.

• NumberFormatterNodeFactory.java

The NodeFactory bundles all parts that make up a node. Thus, the factory provides

creation methods for the NodeModel, NodeDialog, and NodeView. Furthermore, the factory

will be registered via a KNIME extension point such that the node is discoverable by the

framework and will be displayed in the node repository view of KNIME Analytics

Platform. The registration of this file happens in the plugin.xml (see description of the

plugin.xml file below).

• NumberFormatterNodeModel.java

The NodeModel contains the actual implementation of what the node is supposed to do.

Furthermore, it specifies the number of inputs and outputs of a node. In this case the

node model implements the actual number formatting.

• NumberFormatterNodeDialog.java (optional)

The NodeDialog provides the dialog window that opens when you configure (double

click) a node in KNIME Analytics Platform. It provides the user with a GUI to adjust node

specific configuration settings. In the case of the Number Formatter node this is just a

simple text box where the user can enter a format String. Another example would be

the file path for a file reader node.

• NumberFormatterNodeView.java (optional)

The NodeView provides a view of the output of the node. In the case of the Number

Formatter node there will be no view as the output is a simple table. Generally, an

example for a view could be a tree view of a node creating a decision tree model.

• NumberFormatterNodeFactory.xml

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 9

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

This XML file contains the node description and some metadata of the node. The root

element must be a <knimeNode> … </knimeNode> tag. The attributes of this tag further

specify the location of the node icon (icon=”…”) and the type of the node (type=”…”).

Note that this is the type you selected in the dialog of the Node Wizard earlier. The

most common types are Source, Manipulator, Predictor, Learner, Sink, Viewer, and

Loop. The description of the node is specified in the children of the root tag. Have a look

at the contents of the file for some examples. The .xml must be located in the same

package as the NodeFactory and it has to have the same name (only the file ending

differs).

• default.png

This is the icon of the node displayed in the workflow editor. The path to the node icon

is specified in the NumberFormatterNodeFactory.xml (icon attribute of the knimeNode

tag). In this case the icon is just a placeholder displaying a question mark. For your own

node, replace it with an appropriate image representative of what the node does. It

should have a resolution of 16x16 pixels.

Apart from the Java classes and the factory .xml, which define the node implementation,

there are two files that specify the project configuration:

• plugin.xml and META-INF/MANIFEST.MF

These files contain important configuration data about the extension project, like

dependencies to other plug-ins and the aforementioned extension points. You can

double click on the plugin.xml to open an Eclipse overview and review some of the

configuration options (e.g. the values we entered in KNIME Node Wizard are shown on

the overview page under General Information on the left). However, you do not have to

change any values at the moment.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 10

Figure 6. Eclipse overview of the plugin.xml and MANIFEST.MF.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 11

Number Formatter Node Implementation

Once you have reviewed the project structure, we have a look at some implementation

details. We will cover the most important parts as the example code in the project you

created earlier already contains detailed comments in the code of the implemented methods

(also have a look at the reference implementation in the

org.knime.examples.numberformatter folder of the knime-examples repository).

Generally, the Number Formatter node takes a data table as input and applies a user specified

format String to each Double column of the input table. For simplicity, the output table only

contains the formatted numeric columns as String columns. This basically wraps the

functionality of the Java String.format(…) function applied to a list of Double values into a

node usable in KNIME Analytics Platform.

Let’s work through the most important methods that each node has to implement. The

functionality of the node is implemented in the NumberFormatterNodeModel.java class:

protected NumberFormatterNodeModel() {
 super(1, 1);
}

The super(1, 1) call in the constructor of the node model specifies the number of output

and input tables the node should have. In this case it is one input and one output table.

BufferedDataTable[] execute(final BufferedDataTable[] inData, final ExecutionContext
exec)

The actual algorithm of the node is implemented in the execute method. The method is

invoked only after all preceding nodes have been successfully executed and all data is

therefore available at the input ports. The input table will be available in the given array

inData which contains as many data tables as specified in the constructor. Hence, the index

of the array corresponds to the port index of the node. The type of the input is

BufferedDataTable, which is the standard type of all tabular data in KNIME Analytics

Platform. The persistence of the table (e.g. when the workflow is saved) is automatically

handled by the framework. Furthermore, a BufferedDataTable is able to handle data larger

than the size of the main memory as the data will be automatically flushed to disk if

necessary. A table contains DataRow objects, which in turn contain DataCell objects.

DataCells provide the actual access to the data. There are a lot of DataCell implementation

for all types of data, e.g. a DoubleCell containing a floating point number in double precision

(for a list of implementations have a look at the type hierarchy of the DataCell class).

Additionally, each DataCell implements one or multiple DataValue interfaces. These define

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 12

https://github.com/knime/knime-examples/tree/master/org.knime.examples.numberformatter
https://github.com/knime/knime-examples

which access methods the cell has i.e. which types it can be represented as. For example, a

BooleanCell implements IntValue as a Boolean can be easily represented as 0 and 1. Hence,

for each DataValue there could be several compatible DataCell classes.

The second argument exec of the method is the ExecutionContext which provides means to

create/modify BufferedDataTable objects and report the execution status to the user. The

most straightforward way to create a new DataTable is via the createDataContainer(final

DataTableSpec spec) method of the ExecutionContext. This will create an empty container

where you can add rows to. The added rows must comply with the DataTableSpec the data

container was created with. E.g. if the container was created with a table specification

containing two Double columns, each row that is added to the container must contain two

DoubleCells. After you are finished adding rows to the container close it via the close()

method and retrieve the BufferedDataTable with getTable(). This way of creating tables is

also used in the example code (see NumberFormatterNodeModel.java). Apart from creating a

new data container, there are more powerful ways to modify already existing input tables.

However, these are not in the scope of this quickstart guide, but you can have a look at the

methods of the ExecutionContext.

The execute method should return an array of output BufferedDataTable objects with the

length of the number of tables as specified in the constructor. These tables contain the

output of the node.

DataTableSpec[] configure(final DataTableSpec[] inSpecs)

The configure method has two responsibilities. First, it has to check if the incoming data

table specification is suitable for the node to execute with respect to the user supplied

settings. For example, a user may disallow a certain column type in the node dialog, then we

need to check if there are still applicable columns in the input table according to this setting.

Second, to calculate the table specification of the output of the node based on the inputs. For

example: imagine the Number Formatter node gets a table containing two Double columns

and one String column as input. Then this method should return a DataTableSpec (do not

forget to wrap it in an array) containing two DataColumnSpec of type String (the Double

columns will be formatted to String, all other columns are ignored). Analogously to the

execute method, the configure method is called with an array of input DataTableSpec objects

and outputs an array of output DataTableSpec objects containing the calculated table

specification. If the incoming table specification is not suitable for the node to execute or

does not fit the user provided configuration, throw an InvalidSettingsException with an

informative message for the user.

saveSettingsTo(final NodeSettingsWO settings)

and

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 13

loadValidatedSettingsFrom(final NodeSettingsRO settings)

These methods handle the loading and saving of settings that control the behaviour of the

node, i.e. the settings entered by the user in the node dialog. This is used for communication

between the node model and the node dialog and to persist the user settings when the

workflow is saved. Both methods are called with a NodeSettings object (in a read only (RO)

and write only (WO) version) that stores the settings and manages writing or reading them to

or from a file. The NodeSettings object is a key-value storage, hence it is easy to write or read

to or from the settings object. Just have a look at the provided methods of the NodeSettings

object in your Eclipse editor. In our example, we do not write settings directly to the

NodeSettings object as we are using a SettingsModel object to store the user defined format

String. SettingsModel objects already know how to write and read settings from the

NodeSettings (via methods that accept NodeSettings) and help to keep settings

synchronization between the model and dialog simple. Furthermore, they can be used to

create simple dialogs where the loading and saving of settings is already taken care of.

You can find the actual algorithm of the Number Formatter node in the execute method in the

NumberFormatterNodeModel.java class. We encourage you to read through the code of the

above mentioned classes to get a deeper understanding of all parts of a node. For a more

thorough explanation about how a node should behave consult the KNIME Noding

Guidelines.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 14

https://www.knime.com/sites/default/files/inline-images/noding_guidelines.pdf
https://www.knime.com/sites/default/files/inline-images/noding_guidelines.pdf

Deploy your Extension

This section describes how to manually deploy your Extension after you have finished the

implementation using the Number Formatter Extension as example. There are two options:

Option 1: Local Update Site (recommended)

The first option is to create a local Update Site build, which can be installed using the

standard KNIME Analytics Platform update mechanism.

To create a local Update Site build, you need to create a Feature project that includes your

extension. A Feature is used to package a group of plug-ins together into a single installable

and updatable unit. To do so, go to File → New → Other… , open the Plug-in Development

category, select Feature Project and click the Next button.

Figure 7. The Feature Project Wizard start dialogs.

Enter the following values in the Feature Properties dialog window:

• Project ID: org.knime.examples.numberformatter.feature

• Feature Name: Number Formatter

• Feature Version: leave as is

• Feature Vendor: <your_name>

• Install Handler Library: leave empty

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 15

https://help.eclipse.org/2018-12/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconcepts%2Fupdate_site.htm&resultof=%22%75%70%64%61%74%65%22%20%22%75%70%64%61%74%22%20%22%73%69%74%65%22%20
https://help.eclipse.org/2018-12/topic/org.eclipse.pde.doc.user/concepts/feature.htm?resultof=%22%66%65%61%74%75%72%65%22%20%22%66%65%61%74%75%72%22%20

Replace <your_name> with the name that you like to be the author of the created extension.

Additionally, choose a location for the new Feature Project (e.g. next to the Number Formatter

Extension) and click the Next button. On the next dialog choose Initialize from the plug-

ins list: and select the org.knime.examples.numberformatter plug-in (you can use the

search bar to easily find the plug-in). The plug-ins selected here are the ones that will be

bundled into an installable unit by the Feature. Of course, you can edit that list later on.

Finally, hit the Finish button.

Figure 8. The Feature Project Wizard dialogs.

After the wizard has finished, you will see a new project in your Eclipse Package Explorer with

the Project ID you gave it earlier and Eclipse will automatically open an overview of the

feature.xml (you can also open this view by double clicking on the feature.xml file located

in the Feature Project). The Feature overview looks similar to the plugin.xml overview, be

careful not to confuse them. You can view/modify the list of included plug-ins by selecting

the Included Plug-ins tab at the bottom of the overview dialog.

Additionally to the information you entered in the Feature Project Wizard, you

should provide a detailed Feature description, license and copyright information

in the Feature meta data. This can be done by selecting the Information tab at

the bottom of the overview dialog. This information will be displayed to the user

during installation of the Feature.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 16

Figure 9. Eclipse overview of the feature.xml. The link to create an Update Site Project is

marked in red.

Next, you need to publish the Feature on a local Update Site. For this, first create an Update

Site Project by clicking on the Update Site Project link on bottom right corner of the

Eclipse overview dialog of the feature.xml (see figure above). This will start the Update Site

Project Wizard.

Figure 10. The Update Site Project Wizard dialog.

On the shown dialog, enter the following:

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 17

https://help.eclipse.org/2018-12/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fguide%2Ftools%2Fproject_wizards%2Fnew_update_site_project.htm&resultof=%22%75%70%64%61%74%65%22%20%22%75%70%64%61%74%22%20%22%73%69%74%65%22%20
https://help.eclipse.org/2018-12/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fguide%2Ftools%2Fproject_wizards%2Fnew_update_site_project.htm&resultof=%22%75%70%64%61%74%65%22%20%22%75%70%64%61%74%22%20%22%73%69%74%65%22%20

• Project name: org.knime.examples.numberformatter.update

Again, choose a location for the new Update Site Project and click the Finish button. Similar

to the Feature Project Wizard, you will see a new project in your Eclipse Package Explorer

with the Project name you gave it in the wizard dialog and Eclipse will automatically open an

overview of the site.xml called Update Site Map. Again similar to a Feature, an Update Site

bundles one or several Features that can be installed by the Eclipse update mechanism.

Figure 11. Eclipse overview of the site.xml. The Update Site in this image already contains one

category called number_formatting where the org.knime.examples.numberformatter.feature

was added to. This way the Number Formatter Extension will be listed under this category

during installation.

On the Eclipse overview of the site.xml, first create a new category by clicking on the New

Category button. This will create a new default category shown in the tree view on the left. On

the right, enter an ID like number_formatting and a Name like Number Formatting. This name

will be displayed as a category and used for searching when the Feature is installed. Also,

provide a short description of the category.

Second, select the newly created category from the tree view and click the Add Feature…

button. On the shown dialog, search for org.knime.examples.numberformatter.feature and

click the Add button.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 18

Figure 12. The Feature Selection dialog.

At last, click the Build All button. This will build all Features added to the update site and

create an installable unit that can be used to install the Number Formatter Extension into an

KNIME Analytics Platform instance.

The building of the Update Site might take some time. You can review the

progress in the bottom right corner of Eclipse.

After building has finished, you can now point KNIME Analytics Platform to this folder (which

now contains a local Update Site) to install the Extension. To do so, in KNIME Analytics

Platform open the Install New Software… dialog, click on the Add button next to the update

site location, on the opening dialog click on Local…, and choose the folder containing the

Update Site. At last, give the local Update Site a name and click OK. Now, you can install the

Number Formatter Extension like any other plug-in.

Now that you have a working extension, why not sharing it with the community?

Take a look at the following guide: Publish Your Extension on KNIME

Community Hub

Option 2: dropin

The second option is to create a dropin using the Deployable plug-ins and fragments

Wizard from within Eclipse. A dropin is just a .jar file containing your Extension that is

simply put into the Eclipse dropins folder to install it.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 19

https://docs.knime.com/2023-12/development_contribute_extension/index.pdf
https://docs.knime.com/2023-12/development_contribute_extension/index.pdf
https://help.eclipse.org/2018-12/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fp2_dropins_format.html&resultof=%22%64%72%6f%70%69%6e%22%20
https://help.eclipse.org/2018-12/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fp2_dropins_format.html&resultof=%22%64%72%6f%70%69%6e%22%20

To create a dropin containing your Extension, go to File → Export → Plug-in

Development → Deployable plug-ins and fragments and click Next. The dialog that opens

will show a list of deployable plug-ins from your workspace. Check the checkbox next to

org.knime.examples.numberformatter. At the bottom of the dialog you are able to select the

export method. Choose Directory and supply a path to a folder where you want to export

your plugin to. At last click Finish.

Figure 13. The dialog of the deploy wizard.

After the export has finished, the selected folder will contain a .jar file containing your

plugin. To install it into any Eclipse or KNIME Analytics Platform installation, place the .jar

file in the dropins folder of the KNIME/Eclipse installation folder. Note that you have to

restart KNIME/Eclipse for the new plugin to be discovered. In this example, the node is then

displayed at the top level of the node repository in KNIME Analytics Platform.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 20

Further Reading

• For more information on development see the Developers Section of the KNIME

website.

• KNIME source code

• If you have questions regarding development, reach out to us in the KNIME

Development category of our forum.

Create a New Java based KNIME Extension

© 2023 KNIME AG. All rights reserved. 21

https://www.knime.com/developers
https://github.com/knime
https://forum.knime.com/c/knime-development
https://forum.knime.com/c/knime-development

KNIME AG
Talacker 50
8001 Zurich, Switzerland
www.knime.com
info@knime.com

The KNIME® trademark and logo and OPEN FOR INNOVATION® trademark are used by KNIME AG under license

from KNIME GmbH, and are registered in the United States. KNIME® is also registered in Germany.

www.knime.com
mailto:info@knime.com

	Create a New Java based KNIME Extension
	Table of Contents
	Introduction
	Set up a KNIME SDK
	Create a New KNIME Extension Project
	The KNIME Node Wizard

	Test the Example Extension
	Project Structure
	Number Formatter Node Implementation
	Deploy your Extension
	Option 1: Local Update Site (recommended)
	Option 2: dropin

	Further Reading

